Merge pointer to a slice - go

playground
package main
import (
"fmt"
"math/rand"
)
func randoms() *[]int {
var nums []int = make([]int, 5, 5) //Created slice with fixed Len, cap
fmt.Println(len(nums))
for i := range [5]int{} {//Added random numbers.
nums[i] = rand.Intn(10)
}
return &nums//Returning pointer to the slice
}
func main() {
fmt.Println("Hello, playground")
var nums []int = make([]int, 0, 25)
for _ = range [5]int{} {//Calling the functions 5 times
res := randoms()
fmt.Println(res)
//nums = append(nums, res)
for _, i := range *res {//Iterating and appending them
nums = append(nums, i)
}
}
fmt.Println(nums)
}
I am trying to mimic my problem. I have dynamic number of function calls i.e randoms and dynamic number of results. I need to append all of the results i.e numbers in this case.
I am able to do this with iteration and no issues with it. I am looking for a way to do something like nums = append(nums, res). Is there any way to do this/any built-in methods/did I misunderstand the pointers?

I think you're looking for append(nums, (*res)...):
nums = append(nums, (*res)...)
playground
See this answer for more about ..., but in short it expands the contents of a slice. Example:
x := []int{1, 2, 3}
y := []int{4, 5, 6}
x = append(x, y...) // Now x = []int{1, 2, 3, 4, 5, 6}
Further, since you have a pointer to a slice, you need to dereference the pointer with *.
x := []int{1, 2, 3}
y := &x
x = append(x, (*x)...) // x = []int{1, 2, 3, 1, 2, 3}

Related

Go slice overwrite

Here is the source code:
package main
func main() {
testSlice()
}
func testSlice() {
slice := make([]int, 0)
//slice = append(slice, 1) ①
//slice = append(slice, 1, 2) ②
//slice = append(slice, 1, 2, 3) ③
//slice = append(slice, 1, 2, 3, 4) ④
slice = append(slice, 1, 2, 3, 4, 5) ⑤
//slice = append(slice, 1, 2, 3, 4, 5, 6) ⑥
slice2 := append(slice, 1)
slice3 := append(slice, 2)
for _, i := range slice2 {
print(i)
}
println()
for _, i := range slice3 {
print(i)
}
}
Expected output:
123451
123452
Actual output:
123452
123452
The output of ①~⑥ except ⑤ is as expected. But why ⑤ slice3 overwrites slice2?
Is the reason related to pointer or slice resize?
Check out this SO answer for a really helpful explanation of what a slice actually is before reading the rest of my answer. It might be easier to understand what's going on by printing out the actual slice headers. See the following example code (and go playground):
package main
import (
"fmt"
"reflect"
"unsafe"
)
func main() {
testSlice()
}
func testSlice() {
slice := make([]int, 0)
slice = append(slice, 1, 2, 3, 4, 5)
fmt.Printf("%+v\n", (*reflect.SliceHeader)(unsafe.Pointer(&slice)))
slice2 := append(slice, 1)
fmt.Printf("%+v\n", (*reflect.SliceHeader)(unsafe.Pointer(&slice2)))
slice3 := append(slice, 2)
fmt.Printf("%+v\n", (*reflect.SliceHeader)(unsafe.Pointer(&slice3)))
for _, i := range slice2 {
print(i)
}
println()
for _, i := range slice3 {
print(i)
}
}
This will print something like this:
&{Data:824634441776 Len:5 Cap:6}
&{Data:824634441776 Len:6 Cap:6}
&{Data:824634441776 Len:6 Cap:6}
This shows that all variables slice, slice2, and slice3 are pointing at the same data (Data which is a pointer to the first element of the slice) but the slice headers themselves are different. When you're performing your appends, you are modifying the underlying slice shared by all the variables, and storing new slice headers into new variables. The slice headers for slice2 and slice3 are looking at the same slice of data, so when you come along and perform your append for slice3, you're overwriting the 6th element in the underlying slice that is shared by all the variables.

Go subslice pointer reference

The result of s is [1, 2, 3], I thought that slices hold a reference to the underlying array. Isn't that the case?
package main
import (
"fmt"
)
func main() {
s := []int{1, 2, 3}
ss := s[1:]
ss = append(ss, 4)
for _, v := range ss {
v += 10
}
for i := range ss {
ss[i] += 10
}
fmt.Println(s)
}
I thought that slices hold a reference to the underlying array. Isn't that the case?
Yes it is. But you created an array with length 3 with this statement:
s := []int{1, 2, 3}
When you appended an element to ss, that required an allocation of a new, longer array. So you lost the link between ss and s with this statement:
ss = append(ss, 4)
You can verify that by running this example:
package main
import (
"fmt"
)
func main() {
s := []int{1, 2, 3}
ss := s[1:]
ss[0] += 5
ss = append(ss, 4)
ss[0] += 100
fmt.Println(s)
}
Which prints [1 7 3].
If you change your initialization of s to have a length greater than three, then no new array allocation will be required, and the link between s and ss will be maintained:
package main
import (
"fmt"
)
func main() {
s := make([]int, 3, 4)
s[0], s[1], s[2] = 1, 2, 3
ss := s[1:]
ss[0] += 5
ss = append(ss, 4)
ss[0] += 100
fmt.Println(s)
}
Output: [1 107 3]
The answer that theorizes that the problem is a range copy of the slice is incorrect, which can be shown with this example:
package main
import (
"fmt"
)
func main() {
s := make([]int, 3, 4)
s[0], s[1], s[2] = 1, 2, 3
ss := s[1:]
ss = append(ss, 4)
for i := range ss {
ss[i] += 10
}
fmt.Println(s)
}
Output: [1 12 13]
It seems like you've created a copy of slice s, and you've made changes to slice copy ss thinking that the changes would also be passed to the slice that the copy was made from.
The first for loop is also walking through the elements of slice ss, but is not actually doing anything with them, because range also creates a copy when providing you element values, so it doesn't actually do anything!
It does seem like you're trying to do the following:
Append the value 4 to slice s
Take each value from index 1 of slice to the end of the slice, and add 10
If that's the case, this should help you accomplish that:
package main
import (
"fmt"
)
func main() {
s := []int{1, 2, 3}
s = append(s, 4)
for i := range s {
if i == 0 {
continue
}
s[i] += 10
}
fmt.Println(s)
}
You can see this on the Go playground: Link

When is the slice element covered in this code?

I logged every element before I appending it. But the result looks like that some element is covered.
I do not know when it is covered.
package main
import "fmt"
func main() {
graph := [][]int{
[]int{3, 1},
[]int{4, 6, 7, 2, 5},
[]int{4, 6, 3},
[]int{6, 4},
[]int{7, 6, 5},
[]int{6},
[]int{7},
[]int{},
}
fmt.Println(allPathsSourceTarget(graph))
}
func allPathsSourceTarget(graph [][]int) [][]int {
n := len(graph) - 1
result := make([][]int, 0, 200)
var pathRecord func(target, path []int)
pathRecord = func(target, path []int) {
if (len(target) == 0) && (path[len(path)-1] == n) {
fmt.Println("insert into", path) // should end with 7
result = append(result, path)
}
for _, v := range target {
pathRecord(graph[v], append(path, v))
}
}
for _, v := range graph[0] {
pathRecord(graph[v], []int{0, v})
}
return result
}
Every element in the result should end with 7.
You issue is with this line:
pathRecord(graph[v], append(path, v))
Go is so "smart" so he's trying to reuse the same slice allocated memory and you actually change the path you already added to result. ):
try this instead:
newPath = make([]int, len(path))
copy(newPath, path)
pathRecord(graph[v], append(newPath, v))
This works for me. I assume it's weirdness with append and slices
I assume that the memory backing "this append" is passed into the recursive function as the slice is acting something like a pointer
Then the next time it's the same memory so it gets overwritten
So you need to take a copy at each recursion to stop it overwriting
pathRecord = func(target, path []int) {
if (len(target) == 0) && (path[len(path)-1] == n) {
var c []int = make([]int, len(path))
copy(c, path)
//fmt.Println("insert into", payload) // should end with 7
result = append(result, c)
}
for _, v := range target {
pathRecord(graph[v], append(path, v)) //this append
}
}

How to find an element intersect in other array

I have an array like:
a:= [1,2,3,4,5]
b:= [5,6,7,8,9]
How to know array b have contain element in array a without using foreach?
How to know array b have contain element in array a without using foreach?
You can't. And you should not try as this is pointless restriction.
If the arrays are sorted (as they appear to be in your question) there is an algorithm that works better than going through each element.
Pick the first element of a, call it x.
Binary search b for the first element equal or greater than x. If they are equal, you found an element that is contained in both arrays, if not, make that your new x. Now search a for x in the same way. Repeat until you run out of elements in one of the arrays.
This can be trivially extended to an arbitrary number of arrays (in fact, it's easier to write with an arbitrary number of arrays).
Here's a quick and dirty implementation:
package main
import (
"fmt"
"sort"
)
func inter(arrs ...[]int) []int {
res := []int{}
x := arrs[0][0]
i := 1
for {
off := sort.SearchInts(arrs[i], x)
if off == len(arrs[i]) {
// we emptied one slice, we're done.
break
}
if arrs[i][off] == x {
i++
if i == len(arrs) {
// x was in all the slices
res = append(res, x)
x++ // search for the next possible x.
i = 0
}
} else {
x = arrs[i][off]
i = 0 // This can be done a bit more optimally.
}
}
return res
}
func main() {
a := []int{1, 2, 3, 4, 5, 7}
b := []int{5, 6, 7, 8, 9}
fmt.Println(inter(a, b))
}
package main
import (
set "github.com/deckarep/golang-set"
)
func array_intersect(a, b []interface{}) []interface{} {
return set.NewSetFromSlice(a).Intersect(set.NewSetFromSlice(b)).ToSlice()
}
func main() {
a := []interface{}{1, 2, 3, 4, 5, 7}
b := []interface{}{5, 6, 7, 8, 9}
println(array_intersect(a, b))
}
package main
import (
"fmt"
"sort"
)
func array_intersect(a, b []int) []int {
ret := []int{}
lenA := len(a)
lenB := len(b)
if lenA == 0 || lenB == 0 {
return ret
}
sort.Ints(a)
sort.Ints(b)
var i, j int
for {
a = a[i:]
if i = sort.SearchInts(a, b[j]); i >= len(a) {
break
}
if a[i] == b[j] {
ret = append(ret, a[i])
}
if j++; j >= lenB {
break
}
}
return ret
}
func main() {
a := []int{5, 7, 1, 1, 2, 3, 4, 5, 7}
b := []int{1, 1, 5, 6, 7, 8, 9}
fmt.Printf("a=%v, b=%v", a, b)
fmt.Printf("%v\n", array_intersect(a, b))
fmt.Printf("a=%v, b=%v", a, b)
}

Golang remove elements when iterating over slice panics

I want delete some elements from a slice, and https://github.com/golang/go/wiki/SliceTricks advise this slice-manipulation:
a = append(a[:i], a[i+1:]...)
Then I coded below:
package main
import (
"fmt"
)
func main() {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
for i, value := range slice {
if value%3 == 0 { // remove 3, 6, 9
slice = append(slice[:i], slice[i+1:]...)
}
}
fmt.Printf("%v\n", slice)
}
with go run hello.go, it panics:
panic: runtime error: slice bounds out of range
goroutine 1 [running]:
panic(0x4ef680, 0xc082002040)
D:/Go/src/runtime/panic.go:464 +0x3f4
main.main()
E:/Code/go/test/slice.go:11 +0x395
exit status 2
How can I change this code to get right?
I tried below:
1st, with a goto statement:
func main() {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
Label:
for i, n := range slice {
if n%3 == 0 {
slice = append(slice[:i], slice[i+1:]...)
goto Label
}
}
fmt.Printf("%v\n", slice)
}
it works, but too much iteration
2nd, use another slice sharing same backing array:
func main() {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
dest := slice[:0]
for _, n := range slice {
if n%3 != 0 { // filter
dest = append(dest, n)
}
}
slice = dest
fmt.Printf("%v\n", slice)
}
but not sure if this one is better or not.
3rd, from Remove elements in slice, with len operator:
func main() {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
for i := 0; i < len(slice); i++ {
if slice[i]%3 == 0 {
slice = append(slice[:i], slice[i+1:]...)
i-- // should I decrease index here?
}
}
fmt.Printf("%v\n", slice)
}
which one should I take now?
with benchmark:
func BenchmarkRemoveSliceElementsBySlice(b *testing.B) {
for i := 0; i < b.N; i++ {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
dest := slice[:0]
for _, n := range slice {
if n%3 != 0 {
dest = append(dest, n)
}
}
}
}
func BenchmarkRemoveSliceElementByLen(b *testing.B) {
for i := 0; i < b.N; i++ {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
for i := 0; i < len(slice); i++ {
if slice[i]%3 == 0 {
slice = append(slice[:i], slice[i+1:]...)
}
}
}
}
$ go test -v -bench=".*"
testing: warning: no tests to run
PASS
BenchmarkRemoveSliceElementsBySlice-4 50000000 26.6 ns/op
BenchmarkRemoveSliceElementByLen-4 50000000 32.0 ns/op
it seems delete all elements in one loop is better
Iterate over the slice copying elements that you want to keep.
k := 0
for _, n := range slice {
if n%3 != 0 { // filter
slice[k] = n
k++
}
}
slice = slice[:k] // set slice len to remaining elements
The slice trick is useful in the case where a single element is deleted. If it's possible that more than one element will be deleted, then use the for loop above.
working playground example
while this is good answer for small slice:
package main
import "fmt"
func main() {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
k := 0
for _, n := range slice {
if n%3 != 0 { // filter
slice[k] = n
k++
}
}
slice = slice[:k]
fmt.Println(slice) //[1 2 4 5 7 8]
}
for minimizing memory write for first elements (for big slice), you may use this:
package main
import "fmt"
func main() {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
k := 0
for i, n := range slice {
if n%3 != 0 { // filter
if i != k {
slice[k] = n
}
k++
}
}
slice = slice[:k]
fmt.Println(slice) //[1 2 4 5 7 8]
}
and if you need new slice or preserving old slice:
package main
import "fmt"
func main() {
slice := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
s2 := make([]int, len(slice))
k := 0
for _, n := range slice {
if n%3 != 0 { // filter
s2[k] = n
k++
}
}
s2 = s2[:k]
fmt.Println(s2) //[1 2 4 5 7 8]
}

Resources