Reduce resource consumption in ClickHouse - clickhouse

The table
CREATE TABLE events
(
site_id UInt64,
name String
-- other columns
)
ENGINE = CollapsingMergeTree(sign_flag)
PARTITION BY site_id
ORDER BY (name)
SETTINGS index_granularity = 8192;
The query
SELECT 'wtf',
*
FROM events
WHERE site_id = 1 AND
name = 'some_name'
LIMIT 100000;
The log
SELECT formatReadableSize(read_bytes) AS read_bytes,
formatReadableSize(memory_usage) AS memory_usage,
formatReadableQuantity(read_rows) AS read_rows,
query_duration_ms / 1000 AS query_duration_sec,
query
FROM system.query_log
WHERE query LIKE '%wtf%'
ORDER BY
event_time DESC
LIMIT 100;
+------------+--------------+--------------+--------------------+
| read_bytes | memory_usage | read_rows | query_duration_sec |
+------------+--------------+--------------+--------------------+
| 578.41 MiB | 131.95 MiB | 1.01 million | 10.773 |
+------------+--------------+--------------+--------------------+
I think there are very large numbers in the log.
How to optimize it or I miss something about server config ?

Consider defining another primary key - for this query ORDER BY (name, site_id).
Choosing PK is a pretty important part of the design, to choose right one need to observe all picture of use cases.
See for more details:
ClickHouse: Selecting the Primary Key
StackOverflow #62556274.

Related

In hiveql, what is the most elegant/performatic way of calculating an average value if some of the data is implicitly not present?

In Hiveql, what is the most elegant and performatic way of calculating an average value when there are 'gaps' in the data, with implicit repeated values between them? i.e. Considering a table with the following data:
+----------+----------+----------+
| Employee | Date | Balance |
+----------+----------+----------+
| John | 20181029 | 1800.2 |
| John | 20181105 | 2937.74 |
| John | 20181106 | 3000 |
| John | 20181110 | 1500 |
| John | 20181119 | -755.5 |
| John | 20181120 | -800 |
| John | 20181121 | 1200 |
| John | 20181122 | -400 |
| John | 20181123 | -900 |
| John | 20181202 | -1300 |
+----------+----------+----------+
If I try to calculate a simple average of the november rows, it will return ~722.78, but the average should take into account the days that are not shown have the same balance as the previous register. In the above data, John had 1800.2 between 20181101 and 20181104, for example.
Assuming that the table always have exactly one row for each date/balance and given that I cannot change how this data is stored (and probably shouldn't since it would be a waste of storage to write rows for days with unchanged balances), I've been tinkering with getting the average from a select with subqueries for all the days in the queried month, returning a NULL for the absent days, and then using case to get the balance from the previous available date in reverse order. All of this just to avoid writing temporary tables.
Step 1: Original Data
The 1st step is to recreate a table with the original data. Let's say the original table is called daily_employee_balance.
daily_employee_balance
use default;
drop table if exists daily_employee_balance;
create table if not exists daily_employee_balance (
employee_id string,
employee string,
iso_date date,
balance double
);
Insert Sample Data in original table daily_employee_balance
insert into table daily_employee_balance values
('103','John','2018-10-25',1800.2),
('103','John','2018-10-29',1125.7),
('103','John','2018-11-05',2937.74),
('103','John','2018-11-06',3000),
('103','John','2018-11-10',1500),
('103','John','2018-11-19',-755.5),
('103','John','2018-11-20',-800),
('103','John','2018-11-21',1200),
('103','John','2018-11-22',-400),
('103','John','2018-11-23',-900),
('103','John','2018-12-02',-1300);
Step 2: Dimension Table
You will need a dimension table where you will have a calendar (table with all the possible dates), call it dimension_date. This is a normal industry standard to have a calendar table, you could probably download this sample data over the internet.
use default;
drop table if exists dimension_date;
create external table dimension_date(
date_id int,
iso_date string,
year string,
month string,
month_desc string,
end_of_month_flg string
);
Insert some sample data for entire month of Nov 2018:
insert into table dimension_date values
(6880,'2018-11-01','2018','2018-11','November','N'),
(6881,'2018-11-02','2018','2018-11','November','N'),
(6882,'2018-11-03','2018','2018-11','November','N'),
(6883,'2018-11-04','2018','2018-11','November','N'),
(6884,'2018-11-05','2018','2018-11','November','N'),
(6885,'2018-11-06','2018','2018-11','November','N'),
(6886,'2018-11-07','2018','2018-11','November','N'),
(6887,'2018-11-08','2018','2018-11','November','N'),
(6888,'2018-11-09','2018','2018-11','November','N'),
(6889,'2018-11-10','2018','2018-11','November','N'),
(6890,'2018-11-11','2018','2018-11','November','N'),
(6891,'2018-11-12','2018','2018-11','November','N'),
(6892,'2018-11-13','2018','2018-11','November','N'),
(6893,'2018-11-14','2018','2018-11','November','N'),
(6894,'2018-11-15','2018','2018-11','November','N'),
(6895,'2018-11-16','2018','2018-11','November','N'),
(6896,'2018-11-17','2018','2018-11','November','N'),
(6897,'2018-11-18','2018','2018-11','November','N'),
(6898,'2018-11-19','2018','2018-11','November','N'),
(6899,'2018-11-20','2018','2018-11','November','N'),
(6900,'2018-11-21','2018','2018-11','November','N'),
(6901,'2018-11-22','2018','2018-11','November','N'),
(6902,'2018-11-23','2018','2018-11','November','N'),
(6903,'2018-11-24','2018','2018-11','November','N'),
(6904,'2018-11-25','2018','2018-11','November','N'),
(6905,'2018-11-26','2018','2018-11','November','N'),
(6906,'2018-11-27','2018','2018-11','November','N'),
(6907,'2018-11-28','2018','2018-11','November','N'),
(6908,'2018-11-29','2018','2018-11','November','N'),
(6909,'2018-11-30','2018','2018-11','November','Y');
Step 3: Fact Table
Create a fact table from the original table. In normal practice, you ingest the data to hdfs/hive then process the raw data and create a table with historical data where you keep inserting in increment manner. You can look more into data warehousing to get the proper definition but I call this a fact table - f_employee_balance.
This will re-create the original table with missing dates and populate the missing balance with earlier known balance.
--inner query to get all the possible dates
--outer self join query will populate the missing dates and balance
drop table if exists f_employee_balance;
create table f_employee_balance
stored as orc tblproperties ("orc.compress"="SNAPPY") as
select q1.employee_id, q1.iso_date,
nvl(last_value(r.balance, true) --initial dates to be populated with 0 balance
over (partition by q1.employee_id order by q1.iso_date rows between unbounded preceding and current row),0) as balance,
month, year from (
select distinct
r.employee_id,
d.iso_date as iso_date,
d.month, d.year
from daily_employee_balance r, dimension_date d )q1
left outer join daily_employee_balance r on
(q1.employee_id = r.employee_id) and (q1.iso_date = r.iso_date);
Step 4: Analytics
The query below will give you the true average for by month:
select employee_id, monthly_avg, month, year from (
select employee_id,
row_number() over (partition by employee_id,year,month) as row_num,
avg(balance) over (partition by employee_id,year,month) as monthly_avg, month, year from
f_employee_balance)q1
where row_num = 1
order by year, month;
Step 5: Conclusion
You could have just combined step 3 and 4 together; this would save you from creating extra table. When you are in the big data world, you don't worry much about wasting extra disk space or development time. You can easily add another disk or node and automate the process using workflows. For more information, please look into data warehousing concept and hive analytical queries.

Oracle partitioned table query cost vs non-partitioned table query cost

I have a table PO_HEADER with ~20 million records. Considering our future load on the table we have decided to partitioned the table to increase the performance of the sql queries. Below are the queries used to create the new partitioned tables.
CREATE TABLE PO_HEADER_LP
PARTITION BY LIST (BUYER_IDENTIFIER)
(PARTITION GC66287246AA VALUES ('GC66287246AA') TABLESPACE MITRIX_TABLES,
PARTITION GC43837235JK VALUES ('GC43837235JK') TABLESPACE MITRIX_TABLES,
PARTITION GC84338293AA VALUES ('GC84338293AA') TABLESPACE MITRIX_TABLES,
PARTITION DEFAULTBUID VALUES (DEFAULT) TABLESPACE MITRIX_TABLES)
AS SELECT *
FROM PO_HEADER;
create index PO_HEADER_LP_SI_IDX on PO_HEADER_LP("SUPPLIER_IDENTIFIER") TABLESPACE MITRIX_INDEXES LOCAL;
Old Table PO_HEADER has two indexes on "BUYER_IDENTIFIER" and "SUPPLIER_IDENTIFIER" columns as follows:
create index PO_HEADER_BI_IDX on PO_HEADER("BUYER_IDENTIFIER") TABLESPACE MITRIX_INDEXES;
create index PO_HEADER_SI_IDX on PO_HEADER("SUPPLIER_IDENTIFIER") TABLESPACE MITRIX_INDEXES;
To test the performance of the query, I executed below query on both the tables. But, to my wonder I saw the cost of the 2nd query is almost double than the 1st one. Can any body know, why is the query cost is high of the partitioned table compared to normal table. Thanks in Advance.
select * from po_header where buyer_identifier='GC84338293AA' and supplier_identifier='GC75987723HT'; --cost: 56,941
select * from po_header_lp where buyer_identifier= 'GC84338293AA' and supplier_identifier='GC75987723HT'; --cost: 93,309
PO_HEADER with Global Index on buyer_identifier & supplier_identifier column
PO_HEADER_LP with Global Index on supplier_identifier column
PO_HEADER_LP with Local Index on supplier_identifier column
From your DDL I assume, you have three big buyers (say 5M records each) and a bunch of smaller ones. In other word this would be the correct setup for you list partitioning schema.
You may verify, whether it works testing access on buyer only:
EXPLAIN PLAN SET STATEMENT_ID = 'jara1' into plan_table FOR
select * from tab_lp where BUYER_ID = 1;
;
SELECT * FROM table(DBMS_XPLAN.DISPLAY('plan_table', 'jara1','ALL'));
------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 6662K| 82M| 4445 (2)| 00:00:01 | | |
| 1 | PARTITION LIST SINGLE| | 6662K| 82M| 4445 (2)| 00:00:01 | KEY | KEY |
| 2 | TABLE ACCESS FULL | TAB_LP | 6662K| 82M| 4445 (2)| 00:00:01 | 2 | 2 |
------------------------------------------------------------------------------------------------
The same query for the non-partitioned table should produce much higher cost. Why?
In the partitioned table the selected buyer (in your case GC84338293AA, I'm using surrogate keys) has it own partition.
So full scan of this partition is the best access.
select * from tab where BUYER_ID = 1;
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 6596K| 81M| 14025 (1)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| TAB | 6596K| 81M| 14025 (1)| 00:00:01 |
--------------------------------------------------------------------------
1 - filter("BUYER_ID"=1)
For the non-partitioned table (to get approximately one fourth of the data) the FULL TABLE SCAN is OK as well,
but of course has higher cost as all data must be scanned.
Note - if you see here lower cost, unrealistically low Rows count and/or INDEX ACCESS,
than this is the cause of the problem of the underestimating of the cost. So don't worry the old cost are too low, not the new one too high!
The next step is the access on both buyer and supplier. To get the answer you must provide
additional information.
How selective is the supplier filter?
I.e. if the predicate buyer_identifier='GC84338293AA' returns say 5M records, how may records return the predicate with both columns?
buyer_identifier='GC84338293AA' and supplier_identifier='GC75987723HT'
Is it 4M or 100 records?
If the complete predicate returns only few records than the local index on supplier is OK.
If it returns large number of rows (say the quarter of the partition) - you should stay on FULL PARTITION SCAN and not use it.
This is similar to my comment on the non partitioned table.
Estimation of the supplier cardinality
In case that the column SUPPLIER contains a skewed data (which may fool the CBO to calulate improper cost) you may define explicitely histogram in this column.
I used this statement statement, that calculates the histogram on full data (100% is important for highly skewed data) and for the table and partition.
exec dbms_stats.gather_table_stats(ownname=>user,tabname=>'TAB_LP',granularity=>'all',estimate_percent => 100,METHOD_OPT => 'for columns SUPPLIER_ID size 254');
This worked for my test data, i.e. for supplier with low cardinality an index access was opened (on local no-prefixed index) and for huge suppliers a full partition scan was used.
You can create a Local partitioned index using this script.
CREATE INDEX PO_HEADER_LOCAL_IDX ON PO_HEADER_LP
(BUYER_IDENTIFIER, SUPPLIER_IDENTIFIER)
LOCAL (
PARTITION GC66287246AA,
PARTITION GC43837235JK,
PARTITION GC84338293AA,
PARTITION DEFAULTBUID
);
Also it is recommended to gather statistics of the newly created partition table using this script:
EXEC DBMS_STATS.GATHER_TABLE_STATS('SCHEMA Name','PO_HEADER_LP');
Now you can generate the execution plan again of the following SQL:
select * from po_header_lp where buyer_identifier= 'GC84338293AA' and supplier_identifier='GC75987723HT';
Hope this will help you.

Oracle Domain index and sorting

The following query performs very poorly, due to the "order by". My goal is to get only a small subset of the resultset (using ROWNUM, for example). However, when I add "order by" it goes through the entire resultset performing an index lookup for each record, which makes it extremely slow. Without sorting the query is about 100 times faster when I limit the resultset to, for example, 1000 records.
QUERY:
SELECT text_field
from mytable where
contains(text_field,'ABC', 1)>0
order by another_field;
THIS IS HOW I CREATED THE INDEX:
CREATE INDEX myindex ON mytable (text_field) INDEXTYPE IS ctxsys.context FILTER BY another_field
EXECUTION PLAN:
---------------------------------------------------------------
| Id | Operation | Name |
---------------------------------------------------------------
| 0 | SELECT STATEMENT | |
| 1 | SORT ORDER BY | |
| 2 | TABLE ACCESS BY INDEX ROWID| MYTABLE |
|* 3 | DOMAIN INDEX | MYINDEX |
---------------------------------------------------------------
I also used CTXCAT instead of CONTEXT, and no improvement. I think the problem is, when I want the results sorted (only top 1000), it performs an index lookup for each record in the "entire" resultset. Is there a way to avoid that?
Thank you.
To have the ordering applied before the rownum filter, you need to use an in-line view:
SELECT text_file
from (
SELECT text_field
from mytable where
contains(text_field,'ABC', 1)>0
order by another_field
)
where rownum <= 1000;
With your index in place Oracle should optimise this to do as little work as possible. You should see 'sort order by stopkey' and 'count stopkey' steps in the plan, which is Oracle being clever and knowing it only needs to get 1000 values from the index.
If you don't use the in-line view but just add the rownum to your original query it will still optimise it but as you state it will order the first 1000 random (or indeterminate, anyway) rows it finds, because of the sequence of operations it performs.

Will this type of pagination scale?

I need to paginate on a set of models that can/will become large. The results have to be sorted so that the latest entries are the ones that appear on the first page (and then, we can go all the way to the start using 'next' links).
The query to retrieve the first page is the following, 4 is the number of entries I need per page:
SELECT "relationships".* FROM "relationships" WHERE ("relationships".followed_id = 1) ORDER BY created_at DESC LIMIT 4 OFFSET 0;
Since this needs to be sorted and since the number of entries is likely to become large, am I going to run into serious performance issues?
What are my options to make it faster?
My understanding is that an index on 'followed_id' will simply help the where clause. My concern is on the 'order by'
Create an index that contains these two fields in this order (followed_id, created_at)
Now, how large is the large we are talking about here? If it will be of the order of millions.. How about something like the one that follows..
Create an index on keys followed_id, created_at, id (This might change depending upon the fields in select, where and order by clause. I have tailor-made this to your question)
SELECT relationships.*
FROM relationships
JOIN (SELECT id
FROM relationships
WHERE followed_id = 1
ORDER BY created_at
LIMIT 10 OFFSET 10) itable
ON relationships.id = itable.id
ORDER BY relationships.created_at
An explain would yield this:
+----+-------------+---------------+------+---------------+-------------+---------+------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------------+------+---------------+-------------+---------+------+------+-----------------------------------------------------+
| 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | Impossible WHERE noticed after reading const tables |
| 2 | DERIVED | relationships | ref | sample_rel2 | sample_rel2 | 5 | | 1 | Using where; Using index |
+----+-------------+---------------+------+---------------+-------------+---------+------+------+-----------------------------------------------------+
If you examine carefully, the sub-query containing the order, limit and offset clauses will operate on the index directly instead of the table and finally join with the table to fetch the 10 records.
It makes a difference when at one point your query makes a call like limit 10 offset 10000. It will retrieve all the 10000 records from the table and fetch the first 10. This trick should restrict the traversal to just the index.
An important note: I tested this in MySQL. Other database might have subtle differences in behavior, but the concept holds good no matter what.
you can index these fields. but it depends:
you can assume (mostly) that the created_at is already ordered. So that might by unnecessary. But that more depends on you app.
anyway you should index followed_id (unless its the primary key)

Use Oracle unnested VARRAY's instead of IN operator

Let's say users have 1 - n accounts in a system. When they query the database, they may choose to select from m acounts, with m between 1 and n. Typically the SQL generated to fetch their data is something like
SELECT ... FROM ... WHERE account_id IN (?, ?, ..., ?)
So depending on the number of accounts a user has, this will cause a new hard-parse in Oracle, and a new execution plan, etc. Now there are a lot of queries like that and hence, a lot of hard-parses, and maybe the cursor/plan cache will be full quite early, resulting in even more hard-parses.
Instead, I could also write something like this
-- use any of these
CREATE TYPE numbers AS VARRAY(1000) of NUMBER(38);
CREATE TYPE numbers AS TABLE OF NUMBER(38);
SELECT ... FROM ... WHERE account_id IN (
SELECT column_value FROM TABLE(?)
)
-- or
SELECT ... FROM ... JOIN (
SELECT column_value FROM TABLE(?)
) ON column_value = account_id
And use JDBC to bind a java.sql.Array (i.e. an oracle.sql.ARRAY) to the single bind variable. Clearly, this will result in less hard-parses and less cursors in the cache for functionally equivalent queries. But is there anything like general a performance-drawback, or any other issues that I might run into?
E.g: Does bind variable peeking work in a similar fashion for varrays or nested tables? Because the amount of data associated with every account may differ greatly.
I'm using Oracle 11g in this case, but I think the question is interesting for any Oracle version.
I suggest you try a plain old join like in
SELECT Col1, Col2
FROM ACCOUNTS ACCT
TABLE TAB,
WHERE ACCT.User = :ParamUser
AND TAB.account_id = ACCT.account_id;
An alternative could be a table subquery
SELECT Col1, Col2
FROM (
SELECT account_id
FROM ACCOUNTS
WHERE User = :ParamUser
) ACCT,
TABLE TAB
WHERE TAB.account_id = ACCT.account_id;
or a where subquery
SELECT Col1, Col2
FROM TABLE TAB
WHERE TAB.account_id IN
(
SELECT account_id
FROM ACCOUNTS
WHERE User = :ParamUser
);
The first one should be better for perfomance, but you better check them all with explain plan.
Looking at V$SQL_BIND_CAPTURE in a 10g database, I have a few rows where the datatype is VARRAY or NESTED_TABLE; the actual bind values were not captured. In an 11g database, there is just one such row, but it also shows that the bind value is not captured. So I suspect that bind value peeking essentially does not happen for user-defined types.
In my experience, the main problem you run into using nested tables or varrays in this way is that the optimizer does not have a good estimate of the cardinality, which could lead it to generate bad plans. But, there is an (undocumented?) CARDINALITY hint that might be helpful. The problem with that is, if you calculate the actual cardinality of the nested table and include that in the query, you're back to having multiple distinct query texts. Perhaps if you expect that most or all users will have at most 10 accounts, using the hint to indicate that as the cardinality would be helpful. Of course, I'd try it without the hint first, you may not have an issue here at all.
(I also think that perhaps Miguel's answer is the right way to go.)
For medium sized list (several thousand items) I would use this approach:
First:generate a prepared statement with an XMLTABLE in join with your main table.
For instance:
String myQuery = "SELECT ...
+" FROM ACCOUNTS A,"
+ "XMLTABLE('tab/row' passing XMLTYPE(?) COLUMNS id NUMBER path 'id') t
+ "WHERE A.account_id = t.id"
then loop through your data and build a StringBuffer with this content:
StringBuffer idList = "<tab><row><id>101</id></row><row><id>907</id></row> ...</tab>";
eventually, prepare and submit your statement, then fetch the results.
myQuery.setString(1, idList);
ResultSet rs = myQuery.executeQuery();
while (rs.next()) {...}
Using this approach is also possible to pass multi-valued list, as in the select statement
SELECT * FROM TABLE t WHERE (t.COL1, t.COL2) in (SELECT X.COL1, X.COL2 FROM X);
In my experience performances are pretty good, and the approach is flexible enough to be used in very complex query scenarios.
The only limit is the size of the string passed to the DB, but I suppose it is possible to use CLOB in place of String for arbitrary long XML wrapper to the input list;
This binding a variable number of items into an in list problem seems to come up a lot in various form. One option is to concatenate the IDs into a comma separated string and bind that, and then use a bit of a trick to split it into a table you can join against, eg:
with bound_inlist
as
(
select
substr(txt,
instr (txt, ',', 1, level ) + 1,
instr (txt, ',', 1, level+1) - instr (txt, ',', 1, level) -1 )
as token
from (select ','||:txt||',' txt from dual)
connect by level <= length(:txt)-length(replace(:txt,',',''))+1
)
select *
from bound_inlist a, actual_table b
where a.token = b.token
Bind variable peaking is going to be a problem though.
Does the query plan actually change for larger number of accounts, ie would it be more efficient to move from index to full table scan in some cases, or is it borderline? As someone else suggested, you could use the CARDINALITY hint to indicate how many IDs are being bound, the following test case proves this actually works:
create table actual_table (id integer, padding varchar2(100));
create unique index actual_table_idx on actual_table(id);
insert into actual_table
select level, 'this is just some padding for '||level
from dual connect by level <= 1000;
explain plan for
with bound_inlist
as
(
select /*+ CARDINALITY(10) */
substr(txt,
instr (txt, ',', 1, level ) + 1,
instr (txt, ',', 1, level+1) - instr (txt, ',', 1, level) -1 )
as token
from (select ','||:txt||',' txt from dual)
connect by level <= length(:txt)-length(replace(:txt,',',''))+1
)
select *
from bound_inlist a, actual_table b
where a.token = b.id;
----------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 10 | 840 | 2 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | | | | |
| 2 | NESTED LOOPS | | 10 | 840 | 2 (0)| 00:00:01 |
| 3 | VIEW | | 10 | 190 | 2 (0)| 00:00:01 |
|* 4 | CONNECT BY WITHOUT FILTERING| | | | | |
| 5 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |
|* 6 | INDEX UNIQUE SCAN | ACTUAL_TABLE_IDX | 1 | | 0 (0)| 00:00:01 |
| 7 | TABLE ACCESS BY INDEX ROWID | ACTUAL_TABLE | 1 | 65 | 0 (0)| 00:00:01 |
----------------------------------------------------------------------------------------------------
Another option is to always use n bind variables in every query. Use null for m+1 to n.
Oracle ignores repeated items in the expression_list. Your queries will perform the same way and there will be fewer hard parses. But there will be extra overhead to bind all the variables and transfer the data. Unfortunately I have no idea what the overall affect on performance would be, you'd have to test it.

Resources