How to deep copy in ruby without using marshal? - ruby

this is what my project says :- "You must implement deep copying of lists yourself, without
relying on Ruby constructs for marshalling and unmarshalling data structures"
How do you do that?

Related

Static type inferring in Ruby, what can I do?

I have a school project which aims to statically type some Ruby code. So, my input is simply a .rb file, and I should be able to type every variable that is assigned in the program.
Right now, what I'm planning to do is :
get the file's AST with the Parser library
put each kind of nodes in container objects
implement the visitor pattern to recursively go through the program
try to infer something from there (I was thinking of somehow creating a table of possible input and output types from the core's methods)
I only accept some very basic Ruby as input ( = no call to external library, just the core of ruby + defined-in-the-file methods)
My question is : what do you think of my approach? Is there any gem/existing programs that could help me?
Your approach is technically correct, but it sounds very strange how you put it. This:
Right now, what I'm planning to do is :
get the file's AST with the Parser library
put each kind of nodes in container objects
implement the visitor pattern to recursively go through the program
try to infer something from there (I was thinking of somehow creating a table of possible input and output types from the core's methods)
sounds a little bit like you wanted to go to Mars like this:
Right now, what I'm planning to do is :
get a pencil
get a piece of paper
get a desk
sit down at the desk and use my pen and paper to design a space launch system and Mars lander
In other words, you list three completely trivial points that are maybe an hour of work for an experienced programmer, and then a fourth, that is multiple years of work and worth a PhD.
The most advanced work I know regarding static type inference for Ruby was Diamondback Ruby (DRuby) (not to be confused with the Distributed Ruby standard library aka dRb / dRuby). However, Diamondback Ruby is now abandoned, since the authors gave up on static type inference for Ruby.
One of the principal researchers behind Diamondback Ruby is now working on a new project called RDL. The main differences between Diamondback Ruby and RDL are:
RDL performs dynamic checking, not static checking
RDL relies on explicit annotations, not implicit inference
Steep is another similar project. It, too, relies on dynamic checking and annotations, and in addition does not actually strive for type-correctness.
Ruby Type Inference for IDEA is a complete re-think of how JetBrains plans to approach type inference for Ruby in their IDEA / RubyMine IDE. This does use type inference, but it uses dynamic type inference, not static.
So, as you can see, static type inference for Ruby is so hard that nobody is even trying it, and the guys who did try gave up on it and are now doing dynamic type checking with explicit type annotations instead.
Ruby Type Checking Roundup on Robert Mosolgo's blog is a good overview about the current state-of-the-art in Ruby typing.

XML parser interface to different languags

I'm working on writing a parser for a specific XML based document, which has a lot of rules and complicated interface.
I was going to write the parser in Ruby to parse it to JSON. Then realized, a lot of other people who use different languages like to use it. So I'm thinking of somehow creating a central rule system, where each language can wrap it and create it's own parser.
Any idea how to go about it?
It's unlikely to be productive for you to write your own XML parser from scratch.
As you anticipated, there has indeed been a need for parsing XML in every major language. You can likely find libraries that implement multiple parsing models in any language you need. Be aware of tree-based models such as DOM, stream-based models such as SAX, and pull-based models such as StAX. Also consider XML processing models above the parsing level: Declarative transformations (eg XSLT) and databinding (eg JAXB).
The "central rule system" you envision has also already been realized in schemas (eg, XSD, RelaxNG, Schematron, ...).

How to Work with Ruby Duck Typing

I am learning Ruby and I'm having a major conceptual problem concerning typing. Allow me to detail why I don't understand with paradigm.
Say I am method chaining for concise code as you do in Ruby. I have to precisely know what the return type of each method call in the chain, otherwise I can't know what methods are available on the next link. Do I have to check the method documentation every time?? I'm running into this constantly running tutorial exercises. It seems I'm stuck with a process of reference, infer, run, fail, fix, repeat to get code running rather then knowing precisely what I'm working with during coding. This flies in the face of Ruby's promise of intuitiveness.
Say I am using a third party library, once again I need to know what types are allow to pass on the parameters otherwise I get a failure. I can look at the code but there may or may not be any comments or declaration of what type the method is expecting. I understand you code based on methods are available on an object, not the type. But then I have to be sure whatever I pass as a parameter has all the methods the library is expect, so I still have to do type checking. Do I have to hope and pray everything is documented properly on an interface so I know if I'm expected to give a string, a hash, a class, etc.
If I look at the source of a method I can get a list of methods being called and infer the type expected, but I have to perform analysis.
Ruby and duck typing: design by contract impossible?
The discussions in the preceding stackoverflow question don't really answer anything other than "there are processes you have to follow" and those processes don't seem to be standard, everyone has a different opinion on what process to follow, and the language has zero enforcement. Method Validation? Test-Driven Design? Documented API? Strict Method Naming Conventions? What's the standard and who dictates it? What do I follow? Would these guidelines solve this concern https://stackoverflow.com/questions/616037/ruby-coding-style-guidelines? Is there editors that help?
Conceptually I don't get the advantage either. You need to know what methods are needed for any method called, so regardless you are typing when you code anything. You just aren't informing the language or anyone else explicitly, unless you decide to document it. Then you are stuck doing all type checking at runtime instead of during coding. I've done PHP and Python programming and I don't understand it there either.
What am I missing or not understanding? Please help me understand this paradigm.
This is not a Ruby specific problem, it's the same for all dynamically typed languages.
Usually there are no guidelines for how to document this either (and most of the time not really possible). See for instance map in the ruby documentation
map { |item| block } → new_ary
map → Enumerator
What is item, block and new_ary here and how are they related? There's no way to tell unless you know the implementation or can infer it from the name of the function somehow. Specifying the type is also hard since new_ary depends on what block returns, which in turn depends on the type of item, which could be different for each element in the Array.
A lot of times you also stumble across documentation that says that an argument is of type Object, Which again tells you nothing since everything is an Object.
OCaml has a solution for this, it supports structural typing so a function that needs an object with a property foo that's a String will be inferred to be { foo : String } instead of a concrete type. But OCaml is still statically typed.
Worth noting is that this can be a problem in statically typed lanugages too. Scala has very generic methods on collections which leads to type signatures like ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[Array[T], B, That]): That for appending two collections.
So most of the time, you will just have to learn this by heart in dynamically typed languages, and perhaps help improve the documentation of libraries you are using.
And this is why I prefer static typing ;)
Edit One thing that might make sense is to do what Scala also does. It doesn't actually show you that type signature for ++ by default, instead it shows ++[B](that: GenTraversableOnce[B]): Array[B] which is not as generic, but probably covers most of the use cases. So for Ruby's map it could have a monomorphic type signature like Array<a> -> (a -> b) -> Array<b>. It's only correct for the cases where the list only contains values of one type and the block only returns elements of one other type, but it's much easier to understand and gives a good overview of what the function does.
Yes, you seem to misunderstand the concept. It's not a replacement for static type checking. It's just different. For example, if you convert objects to json (for rendering them to client), you don't care about actual type of the object, as long as it has #to_json method. In Java, you'd have to create IJsonable interface. In ruby no overhead is needed.
As for knowing what to pass where and what returns what: memorize this or consult docs each time. We all do that.
Just another day, I've seen rails programmer with 6+ years of experience complain on twitter that he can't memorize order of parameters to alias_method: does new name go first or last?
This flies in the face of Ruby's promise of intuitiveness.
Not really. Maybe it's just badly written library. In core ruby everything is quite intuitive, I dare say.
Statically typed languages with their powerful IDEs have a small advantage here, because they can show you documentation right here, very quickly. This is still accessing documentation, though. Only quicker.
Consider that the design choices of strongly typed languages (C++,Java,C#,et al) enforce strict declarations of type passed to methods, and type returned by methods. This is because these languages were designed to validate that arguments are correct (and since these languages are compiled, this work can be done at compile time). But some questions can only be answered at run time, and C++ for example has the RTTI (Run Time Type Interpreter) to examine and enforce type guarantees. But as the developer, you are guided by syntax, semantics and the compiler to produce code that follows these type constraints.
Ruby gives you flexibility to take dynamic argument types, and return dynamic types. This freedom enables you to write more generic code (read Stepanov on the STL and generic programming), and gives you a rich set of introspection methods (is_a?, instance_of?, respond_to?, kind_of?, is_array?, et al) which you can use dynamically. Ruby enables you to write generic methods, but you can also explicity enforce design by contract, and process failure of contract by means chosen.
Yes, you will need to use care when chaining methods together, but learning Ruby is not just a few new keywords. Ruby supports multiple paradigms; you can write procedural, object oriend, generic, and functional programs. The cycle you are in right now will improve quickly as you learn about Ruby.
Perhaps your concern stems from a bias towards strongly typed languages (C++, Java, C#, et al). Duck typing is a different approach. You think differently. Duck typing means that if an object looks like a , behaves like a , then it is a . Everything (almost) is an Object in Ruby, so everything is polymorphic.
Consider templates (C++ has them, C# has them, Java is getting them, C has macros). You build an algorithm, and then have the compiler generate instances for your chosen types. You aren't doing design by contract with generics, but when you recognize their power, you write less code, and produce more.
Some of your other concerns,
third party libraries (gems) are not as hard to use as you fear
Documented API? See Rdoc and http://www.ruby-doc.org/
Rdoc documentation is (usually) provided for libraries
coding guidelines - look at the source for a couple of simple gems for starters
naming conventions - snake case and camel case are both popular
Suggestion - approach an online tutorial with an open mind, do the tutorial (http://rubymonk.com/learning/books/ is good), and you will have more focused questions.

Recursive logic for parsing string into complex boolean?

I'm sure this has been done before, I just can't find it.
I need to turn something like, "((A OR B) AND C) OR D" into a database query for an attribute. Specifically I'm using Ruby Sequel. Can anyone point me at an example or utility or something that will keep me from reinventing the wheel?
You can define a grammar using ANTLR and automatically generate a Ruby parser for those type of strings. ANTLR is a parser generator and it allows you to define a grammar for a language (such as a the boolean language that you described).
After parsing, you can specify what actions need to be taken to build the desired data structure (in your case a tree data structure that captures the structure of the query).
This is not particularly a Ruby problem as ANTLR can also generate parsers for other languages. In your case it would produce a Ruby parser that you can integrate into your application to parse the strings and to produce the data structure that you need.

Parsing XML, how is this actually done? [duplicate]

So, just as a fun project, I decided I'd write my own XML parser. No, not to parse a specific document, and no, not using an XML parser library. I mean writing code to parse out any XML document into a usable data structure. Just because I like the challenge. :-)
With that said, so far it's proved to be... interesting. It's not as easy to parse (especially when you start taking into account special characters, CDATA, empty tags, comments, etc.) as it initially looked.
Are there any well documented XML parsing algorithms or explanations anywhere that anyone knows of? It seems like there are well-documented Queue and Stack and BTree and etc. etc. etc. implementations everywhere, but I'm not sure I've ever seen a simple, well-documented XML parser algorithm...
I repeat: I am not looking for a pre-built parser library! I am looking for information on how to create my own pre-built parser library! Do not tell me "use expat" or "use SAX" or whatever. That's not what I'm asking for.
Antlr offers a tutorial on parsing XML. It breaks the process down into phases: lexing, parsing, tree parsing, etc. Looks pretty interesting.
I don't know if it would be "cheating" in your book, but you could try parsing your XML with a ready-built all-purpose language parser like ANTLR. The result would be a list of tokens (if you just use the lexer) or a parse tree (if you include the parser) and you could then re-build the parse tree almost 1:1 into an XML structure.
Maybe. I haven't thought about the ways in which XML might be different from "normal" ANTLR fodder like programming languages, and whether you would be able to define a suitable grammar.
VTD-XML is probably the simplest parsing technique possible...
http://expat.sourceforge.net/
Expat is an XML parser library written in C. It is a stream-oriented parser in which an application registers handlers for things the parser might find in the XML document (like start tags). An introductory article on using Expat is available on xml.com.

Resources