Algorithm for finding Time Complexity of Algorithm [duplicate] - complexity-theory
I wonder whether there is any automatic way of determining (at least roughly) the Big-O time complexity of a given function?
If I graphed an O(n) function vs. an O(n lg n) function I think I would be able to visually ascertain which is which; I'm thinking there must be some heuristic solution which enables this to be done automatically.
Any ideas?
Edit: I am happy to find a semi-automated solution, just wondering whether there is some way of avoiding doing a fully manual analysis.
It sounds like what you are asking for is an extention of the Halting Problem. I do not believe that such a thing is possible, even in theory.
Just answering the question "Will this line of code ever run?" would be very difficult if not impossible to do in the general case.
Edited to add:
Although the general case is intractable, see here for a partial solution: http://research.microsoft.com/apps/pubs/default.aspx?id=104919
Also, some have stated that doing the analysis by hand is the only option, but I don't believe that is really the correct way of looking at it. An intractable problem is still intractable even when a human being is added to the system/machine. Upon further reflection, I suppose that a 99% solution may be doable, and might even work as well as or better than a human.
You can run the algorithm over various size data sets, and you could then use curve fitting to come up with an approximation. (Just looking at the curve you create probably will be enough in most cases, but any statistical package has curve fitting).
Note that some algorithms exhibit one shape with small data sets, but another with large... and the definition of large remains a bit nebulous. This means that an algorithm with a good performance curve could have so much real world overhead that (for small data sets) it doesn't work as well as the theoretically better algorithm.
As far as code inspection techniques, none exist. But instrumenting your code to run at various lengths and outputting a simple file (RunSize RunLength would be enough) should be easy. Generating proper test data could be more complex (some algorithms work better/worse with partially ordered data, so you would want to generate data that represented your normal use-case).
Because of the problems with the definition of "what is large" and the fact that performance is data dependent, I find that static analysis often is misleading. When optimizing performance and selecting between two algorithms, the real world "rubber hits the road" test is the only final arbitrator I trust.
A short answer is that it's impossible because constants matter.
For instance, I might write a function that runs in O((n^3/k) + n^2). This simplifies to O(n^3) because as n approaches infinity, the n^3 term will dominate the function, irrespective of the constant k.
However, if k is very large in the above example function, the function will appear to run in almost exactly n^2 until some crossover point, at which the n^3 term will begin to dominate. Because the constant k will be unknown to any profiling tool, it will be impossible to know just how large a dataset to test the target function with. If k can be arbitrarily large, you cannot craft test data to determine the big-oh running time.
I am surprised to see so many attempts to claim that one can "measure" complexity by a stopwatch. Several people have given the right answer, but I think that there is still room to drive the essential point home.
Algorithm complexity is not a "programming" question; it is a "computer science" question. Answering the question requires analyzing the code from the perspective of a mathematician, such that computing the Big-O complexity is practically a form of mathematical proof. It requires a very strong understanding of the fundamental computer operations, algebra, perhaps calculus (limits), and logic. No amount of "testing" can be substituted for that process.
The Halting Problem applies, so the complexity of an algorithm is fundamentally undecidable by a machine.
The limits of automated tools applies, so it might be possible to write a program to help, but it would only be able to help about as much as a calculator helps with one's physics homework, or as much as a refactoring browser helps with reorganizing a code base.
For anyone seriously considering writing such a tool, I suggest the following exercise. Pick a reasonably simple algorithm, such as your favorite sort, as your subject algorithm. Get a solid reference (book, web-based tutorial) to lead you through the process of calculating the algorithm complexity and ultimately the "Big-O". Document your steps and results as you go through the process with your subject algorithm. Perform the steps and document your progress for several scenarios, such as best-case, worst-case, and average-case. Once you are done, review your documentation and ask yourself what it would take to write a program (tool) to do it for you. Can it be done? How much would actually be automated, and how much would still be manual?
Best wishes.
I am curious as to why it is that you want to be able to do this. In my experience when someone says: "I want to ascertain the runtime complexity of this algorithm" they are not asking what they think they are asking. What you are most likely asking is what is the realistic performance of such an algorithm for likely data. Calculating the Big-O of a function is of reasonable utility, but there are so many aspects that can change the "real runtime performance" of an algorithm in real use that nothing beats instrumentation and testing.
For example, the following algorithms have the same exact Big-O (wacky pseudocode):
example a:
huge_two_dimensional_array foo
for i = 0, i < foo[i].length, i++
for j = 0; j < foo[j].length, j++
do_something_with foo[i][j]
example b:
huge_two_dimensional_array foo
for j = 0, j < foo[j].length, j++
for i = 0; i < foo[i].length, i++
do_something_with foo[i][j]
Again, exactly the same big-O... but one of them uses row ordinality and one of them uses column ordinality. It turns out that due to locality of reference and cache coherency you might have two completely different actual runtimes, especially depending on the actual size of the array foo. This doesn't even begin to touch the actual performance characteristics of how the algorithm behaves if it's part of a piece of software that has some concurrency built in.
Not to be a negative nelly but big-O is a tool with a narrow scope. It is of great use if you are deep inside algorithmic analysis or if you are trying to prove something about an algorithm, but if you are doing commercial software development the proof is in the pudding, and you are going to want to have actual performance numbers to make intelligent decisions.
Cheers!
This could work for simple algorithms, but what about O(n^2 lg n), or O(n lg^2 n)?
You could get fooled visually very easily.
And if its a really bad algorithm, maybe it wouldn't return even on n=10.
Proof that this is undecidable:
Suppose that we had some algorithm HALTS_IN_FN(Program, function) which determined whether a program halted in O(f(n)) for all n, for some function f.
Let P be the following program:
if(HALTS_IN_FN(P,f(n)))
{
while(1);
}
halt;
Since the function and the program are fixed, HALTS_IN_FN on this input is constant time. If HALTS_IN_FN returns true, the program runs forever and of course does not halt in O(f(n)) for any f(n). If HALTS_IN_FN returns false, the program halts in O(1) time.
Thus, we have a paradox, a contradiction, and so the program is undecidable.
A lot of people have commented that this is an inherently unsolvable problem in theory. Fair enough, but beyond that, even solving it for any but the most trivial cases would seem to be incredibly difficult.
Say you have a program that has a set of nested loops, each based on the number of items in an array. O(n^2). But what if the inner loop is only run in a very specific set of circumstances? Say, on average, it's run in aprox log(n) cases. Suddenly our "obviously" O(n^2) algorithm is really O(n log n). Writing a program that could determine if the inner loop would be run, and how often, is potentially more difficult than the original problem.
Remember O(N) isn't god; high constants can and will change the playing field. Quicksort algorithms are O(n log n) of course, but when the recursion gets small enough, say down to 20 items or so, many implementations of quicksort will change tactics to a separate algorithm as it's actually quicker to do a different type of sort, say insertion sort with worse O(N), but much smaller constant.
So, understand your data, make educated guesses, and test.
I think it's pretty much impossible to do this automatically. Remember that O(g(n)) is the worst-case upper bound and many functions perform better than that for a lot of data sets. You'd have to find the worst-case data set for each one in order to compare them. That's a difficult task on its own for many algorithms.
You must also take care when running such benchmarks. Some algorithms will have a behavior heavily dependent on the input type.
Take Quicksort for example. It is a worst-case O(n²), but usually O(nlogn). For two inputs of the same size.
The traveling salesman is (I think, not sure) O(n²) (EDIT: the correct value is 0(n!) for the brute force algotithm) , but most algorithms get rather good approximated solutions much faster.
This means that the the benchmarking structure has to most of the time be adapted on an ad hoc basis. Imagine writing something generic for the two examples mentioned. It would be very complex, probably unusable, and likely will be giving incorrect results anyway.
Jeffrey L Whitledge is correct. A simple reduction from the halting problem proves that this is undecidable...
ALSO, if I could write this program, I'd use it to solve P vs NP, and have $1million... B-)
I'm using a big_O library (link here) that fits the change in execution time against independent variable n to infer the order of growth class O().
The package automatically suggests the best fitting class by measuring the residual from collected data against each class growth behavior.
Check the code in this answer.
Example of output,
Measuring .columns[::-1] complexity against rapid increase in # rows
--------------------------------------------------------------------------------
Big O() fits: Cubic: time = -0.017 + 0.00067*n^3
--------------------------------------------------------------------------------
Constant: time = 0.032 (res: 0.021)
Linear: time = -0.051 + 0.024*n (res: 0.011)
Quadratic: time = -0.026 + 0.0038*n^2 (res: 0.0077)
Cubic: time = -0.017 + 0.00067*n^3 (res: 0.0052)
Polynomial: time = -6.3 * x^1.5 (res: 6)
Logarithmic: time = -0.026 + 0.053*log(n) (res: 0.015)
Linearithmic: time = -0.024 + 0.012*n*log(n) (res: 0.0094)
Exponential: time = -7 * 0.66^n (res: 3.6)
--------------------------------------------------------------------------------
I guess this isn't possible in a fully automatic way since the type and structure of the input differs a lot between functions.
Well, since you can't prove whether or not a function even halts, I think you're asking a little much.
Otherwise #Godeke has it.
I don't know what's your objective in doing this, but we had a similar problem in a course I was teaching. The students were required to implement something that works at a certain complexity.
In order not to go over their solution manually, and read their code, we used the method #Godeke suggested. The objective was to find students who used linked list instead of a balansed search tree, or students who implemented bubble sort instead of heap sort (i.e. implementations that do not work in the required complexity - but without actually reading their code).
Surprisingly, the results did not reveal students who cheated. That might be because our students are honest and want to learn (or just knew that we'll check this ;-) ). It is possible to miss cheating students if the inputs are small, or if the input itself is ordered or such. It is also possible to be wrong about students who did not cheat, but have large constant values.
But in spite of the possible errors, it is well worth it, since it saves a lot of checking time.
As others have said, this is theoretically impossible. But in practice, you can make an educated guess as to whether a function is O(n) or O(n^2), as long as you don't mind being wrong sometimes.
First time the algorithm, running it on input of various n. Plot the points on a log-log graph. Draw the best-fit line through the points. If the line fits all the points well, then the data suggests that the algorithm is O(n^k), where k is the slope of the line.
I am not a statistician. You should take all this with a grain of salt. But I have actually done this in the context of automated testing for performance regressions. The patch here contains some JS code for it.
If you have lots of homogenious computational resources, I'd time them against several samples and do linear regression, then simply take the highest term.
It's easy to get an indication (e.g. "is the function linear? sub-linear? polynomial? exponential")
It's hard to find the exact complexity.
For example, here's a Python solution: you supply the function, and a function that creates parameters of size N for it. You get back a list of (n,time) values to plot, or to perform regression analysis. It times it once for speed, to get a really good indication it would have to time it many times to minimize interference from environmental factors (e.g. with the timeit module).
import time
def measure_run_time(func, args):
start = time.time()
func(*args)
return time.time() - start
def plot_times(func, generate_args, plot_sequence):
return [
(n, measure_run_time(func, generate_args(n+1)))
for n in plot_sequence
]
And to use it to time bubble sort:
def bubble_sort(l):
for i in xrange(len(l)-1):
for j in xrange(len(l)-1-i):
if l[i+1] < l[i]:
l[i],l[i+1] = l[i+1],l[i]
import random
def gen_args_for_sort(list_length):
result = range(list_length) # list of 0..N-1
random.shuffle(result) # randomize order
# should return a tuple of arguments
return (result,)
# timing for N = 1000, 2000, ..., 5000
times = plot_times(bubble_sort, gen_args_for_sort, xrange(1000,6000,1000))
import pprint
pprint.pprint(times)
This printed on my machine:
[(1000, 0.078000068664550781),
(2000, 0.34400010108947754),
(3000, 0.7649998664855957),
(4000, 1.3440001010894775),
(5000, 2.1410000324249268)]
Related
Time-complexity derivation procedure in generic way for algorithms
I have been reading a lot of articles on data structures and algorithms and everyone only says the most generic way of calculating the time complexity and is usually defined as the time taken for the execution considering variations in input and to iterate an array of n elements let the code be as below and the Big-O complexity is O(n). for (int i=0;i<a.length;i++) System.out.println(a[i]); Agreed thats the way of calculating the time complexity but what about recursive algorithms and how does one come to the conclusion of logarithmic expressions and stuff while calculating time complexity. There is no standard that I came across or aware of so far for deriving those complexities. If yes can someone please throw some light or refer me where to start. Thanks in advance. Please don't mark as duplicate as there could be many who are facing the same issue of understanding and derving time-complexities after getting tired from different tutorials on web.
Unfortunately, there's no general-purpose algorithm you can follow that, given an arbitrary piece of code, will tell you its time complexity. This is due, in part, to the fact that there's no general way to determine whether an arbitrary piece of code will even halt in the first place. If we could take an arbitrary piece of code and work out its time complexity - assuming it even has one - we could potentially use that to determine whether it would terminate, and that's not something we can do. As an example of why this is hard, consider this piece of code: int n = /* get user input */ while (n > 1) { if (n % 2 == 0) n /= 2; else n = 3*n + 1; } This code traces out the "hailstone sequence" starting at the user's number n. Surprisingly, no one knows whether this process always terminates, and so no one currently has any upper bound at all on how many steps this loop is going to take to terminate. In practice, working out how long a piece of code takes to run requires a mix of different techniques. For example, the Master Theorem is helpful in determining how long it takes for many recursive functions to terminate. For other, more complex recursive functions, we can often write out a recurrence relation for the runtime, then use a battery of techniques to solve those recurrences. Sometimes it's helpful to work from the inside out, replacing inner loops with simpler expressions and seeing what comes out. Sometimes, it's important to know useful summations like 1/1 + 1/2 + 1/3 + ... + 1/n = Θ(log n), or that 20 + 21 + ... + 2k = Θ(2k). Sometimes, you work out the runtime by thinking about how the code works and what each step does. And sometimes, it takes years to work out just how fast a piece of code is.
Is it recommended to use recursive algorithm to calculate sum of n cubes in terms of time and space efficiency?
Is it recommended to use recursive algorithm to calculate sum of n cubes in terms of time and space efficiency? comparing to a non-recursive?
What exactly do you mean? Summing the first n cubes is best done by computing (n^2*(n + 1)^2)/4, but if you're given a list of numbers to sum their cubes, that's not much of an option. If you are in a language that does tail call optimization, a tail call recursive implementation is certainly recommended. If you're not, it may still be worth writing the recursive function if that is easier for you to reason about (a very important aspect of organizing code!). But do keep in mind that a recursion of depth n will take, depending on your language, compiler, etc., anywhere from 4*n to at least several 100*n bytes of memory, and stack space isn't unlimited. I'd go for a loop in most languages. For large n, because it is more resource efficient, and for small n, because I find it easier to read than a recursive version. But that's tied to my personal background and experience, and what is easier for you and whoever else needs to se your code maybe completely different.
It is dependent on what you want to accomplish. If you want it to be dependent on previous outcomes, you can make it recursive. Otherwise I would suggest to make it non-recursive.
Most compiled languages have tail recursion removal and for simple case like this it will not be a problem. Math people find it much easier to write functional languages and recursions come more natural to them. You can however you can write very efficiently: var sumOf0To10Cubes = Enumerable.Range(0, 10).Select(o => Math.Pow(o, 3)).Sum(); Note that math people prefer: Sum[x^3,x->{0,10}]
Is it possible to make a O((n!)!) complexity algorithm?
I can't imagine how such an algorithm would be constructed. Would the algorithm "for every permutation of N elements, brute-force the traveling salesman problem, where the edges are decided by the order of the elements" have such a complexity?
Here's your algorithm! import math def eat_cpu(n): count = 0 for _ in xrange(math.factorial(math.factorial(n))): count += 1 return count eat_cpu(4) It is a function that calculates (n!)! using the method of incrementation. It takes O((n!)!) time. Actually, upon reflection, I realized that this algorithm is also O((n!)!): def dont_eat_cpu(n): return 0 because O is an upper bound. We commonly forget this when throwing O(...) around. The previous algorithm is thus Theta((n!)!) in addition to being O((n!)!), while this one is just Theta(1).
Enumerating all partitions of a set is O(n!). Now, all permutations of all partitions of a set will be O((n!)!), although the example is a bit artificial. Now, to come up with a useful algorithm it's a totally different story. I am not aware of any such algorithm, and in any case its scaling will be absolutely awful.
You can do better than that - there are known to be problems that require 2^2^(p(n)) time to solve - see http://en.wikipedia.org/wiki/2-EXPTIME - and it appears that these problems are not completely artificial either: "Generalizations of many fully observable games are EXPTIME-complete"
Kolmogorov Complexity Approximation Algorithm
I'm looking for a algorithm that can compute an approximation of the Kolmogorov complexity of given input string. So if K is the Kolmogorov complexity of a string S, and t represents time, then the function would behave something like this.. limit(t->inf)[K_approx(t,S)] = K.
In theory, a program could converge on the Kolmogorov complexity of its input string as the running time approaches infinity. It could work by running every possible program in parallel that is the length of the input string or shorter. When a program of a given length is found, that length is identified as the minimum length known for now, is printed, and no more programs >= that length are tried. This algorithm will (most likely) run forever, printing shorter and shorter lengths, converging on the exact Kolmogorov complexity given infinite time. Of course, running an exponential number of programs is highly intractible. A more efficient algorithm is to post a code golf on StackOverflow. A few drawbacks: It can take a few days before good results are found. It uses vast amounts of our most valuable computing resources, costing thousands of dollars in productivity loss. Results are produced with less frequency over time as resources are diverted to other computations. The algorithm terminates prematurely for many inputs, meaning it does not work in general.
The wikipedia page for Kolmogorov complexity has a subsection entitled "Incomputability of Kolmogorov complexity", under the "Basic results" section. This is not intended to be a basic measure that you can compute, or even approximate productively. There are better ways of achieving what you want, without a doubt. If a measure of randomness is what you want, you could try the binary entropy function. Compressibility by one of the standard algorithms might also fit the bill.
I think this might work? If somebody sees an error, please point it out. function KApprox(S:string,t:integer,TapeSizeMax:integer) : Turing Machine of size k begin // An abstract data type that represents a turing machine of size k var TM(k:integer) : Turing Machine of size k; var TMSmallest(k:integer) : Turing Machine of size k; var j : integer; var i : integer; for (j = t to 0 step -1) // reduce the time counter by 1 begin for (i = TMax to 1 step -1) // go to the next smaller size of TM begin foreach (TM(i)) // enumerate each TM of size i begin if (TM(i).halt(TapeSizeMax) == true) and (TM(i).output() == S) then begin if (sizeof(TM(i)) < sizeof(TMSmallest(i))) then TMSmallest(i): = TM(i); end; end; end; end; return TMSmallest; end;
It looks like Ray Solomonoff did a lot of work in this field. Publications of Ray Solomonoff Inductive Inference Theory - A Unified Approach to Problems in Pattern Recognition and Artificial Intelligence. Does Algorithmic Probability Solve the Problem of Induction?
The first issue that I notice is that "the Kolmogorov Complexity" isn't well defined. It depends to some degree on the choice of how to represent programs. So, the first thing you would need to do is fix some encoding of programs (for example, Joey Adams' specification that programs be written in J). Once you have the encoding, the algorithm you are looking for is quite simple. See Joey's answer for that. But the situation is even worse than having to run exponentially many programs. Each of those programs could run as long as you could possibly imagine (technically: running time as a function input size could grow faster than any recursive function). What's more, it could be the case that some of the shortest programs are the ones that run the longest. So while the parallel approach will approach the correct value as time goes to infinity, it will do so unimaginably slowly. You could stop the program prematurely, figuring that the approximation at that point is good enough. However, you have no idea in general how good that approximation is. In fact, there are theorems that show you can never know. So the short answer is "easy, just use Joey's algorithm", but by any measure of practicality, the answer is, "you don't have a chance". As has been recommended by rwong, you are better off just using a heavy-duty compression algorithm.
Programmatically obtaining Big-O efficiency of code
I wonder whether there is any automatic way of determining (at least roughly) the Big-O time complexity of a given function? If I graphed an O(n) function vs. an O(n lg n) function I think I would be able to visually ascertain which is which; I'm thinking there must be some heuristic solution which enables this to be done automatically. Any ideas? Edit: I am happy to find a semi-automated solution, just wondering whether there is some way of avoiding doing a fully manual analysis.
It sounds like what you are asking for is an extention of the Halting Problem. I do not believe that such a thing is possible, even in theory. Just answering the question "Will this line of code ever run?" would be very difficult if not impossible to do in the general case. Edited to add: Although the general case is intractable, see here for a partial solution: http://research.microsoft.com/apps/pubs/default.aspx?id=104919 Also, some have stated that doing the analysis by hand is the only option, but I don't believe that is really the correct way of looking at it. An intractable problem is still intractable even when a human being is added to the system/machine. Upon further reflection, I suppose that a 99% solution may be doable, and might even work as well as or better than a human.
You can run the algorithm over various size data sets, and you could then use curve fitting to come up with an approximation. (Just looking at the curve you create probably will be enough in most cases, but any statistical package has curve fitting). Note that some algorithms exhibit one shape with small data sets, but another with large... and the definition of large remains a bit nebulous. This means that an algorithm with a good performance curve could have so much real world overhead that (for small data sets) it doesn't work as well as the theoretically better algorithm. As far as code inspection techniques, none exist. But instrumenting your code to run at various lengths and outputting a simple file (RunSize RunLength would be enough) should be easy. Generating proper test data could be more complex (some algorithms work better/worse with partially ordered data, so you would want to generate data that represented your normal use-case). Because of the problems with the definition of "what is large" and the fact that performance is data dependent, I find that static analysis often is misleading. When optimizing performance and selecting between two algorithms, the real world "rubber hits the road" test is the only final arbitrator I trust.
A short answer is that it's impossible because constants matter. For instance, I might write a function that runs in O((n^3/k) + n^2). This simplifies to O(n^3) because as n approaches infinity, the n^3 term will dominate the function, irrespective of the constant k. However, if k is very large in the above example function, the function will appear to run in almost exactly n^2 until some crossover point, at which the n^3 term will begin to dominate. Because the constant k will be unknown to any profiling tool, it will be impossible to know just how large a dataset to test the target function with. If k can be arbitrarily large, you cannot craft test data to determine the big-oh running time.
I am surprised to see so many attempts to claim that one can "measure" complexity by a stopwatch. Several people have given the right answer, but I think that there is still room to drive the essential point home. Algorithm complexity is not a "programming" question; it is a "computer science" question. Answering the question requires analyzing the code from the perspective of a mathematician, such that computing the Big-O complexity is practically a form of mathematical proof. It requires a very strong understanding of the fundamental computer operations, algebra, perhaps calculus (limits), and logic. No amount of "testing" can be substituted for that process. The Halting Problem applies, so the complexity of an algorithm is fundamentally undecidable by a machine. The limits of automated tools applies, so it might be possible to write a program to help, but it would only be able to help about as much as a calculator helps with one's physics homework, or as much as a refactoring browser helps with reorganizing a code base. For anyone seriously considering writing such a tool, I suggest the following exercise. Pick a reasonably simple algorithm, such as your favorite sort, as your subject algorithm. Get a solid reference (book, web-based tutorial) to lead you through the process of calculating the algorithm complexity and ultimately the "Big-O". Document your steps and results as you go through the process with your subject algorithm. Perform the steps and document your progress for several scenarios, such as best-case, worst-case, and average-case. Once you are done, review your documentation and ask yourself what it would take to write a program (tool) to do it for you. Can it be done? How much would actually be automated, and how much would still be manual? Best wishes.
I am curious as to why it is that you want to be able to do this. In my experience when someone says: "I want to ascertain the runtime complexity of this algorithm" they are not asking what they think they are asking. What you are most likely asking is what is the realistic performance of such an algorithm for likely data. Calculating the Big-O of a function is of reasonable utility, but there are so many aspects that can change the "real runtime performance" of an algorithm in real use that nothing beats instrumentation and testing. For example, the following algorithms have the same exact Big-O (wacky pseudocode): example a: huge_two_dimensional_array foo for i = 0, i < foo[i].length, i++ for j = 0; j < foo[j].length, j++ do_something_with foo[i][j] example b: huge_two_dimensional_array foo for j = 0, j < foo[j].length, j++ for i = 0; i < foo[i].length, i++ do_something_with foo[i][j] Again, exactly the same big-O... but one of them uses row ordinality and one of them uses column ordinality. It turns out that due to locality of reference and cache coherency you might have two completely different actual runtimes, especially depending on the actual size of the array foo. This doesn't even begin to touch the actual performance characteristics of how the algorithm behaves if it's part of a piece of software that has some concurrency built in. Not to be a negative nelly but big-O is a tool with a narrow scope. It is of great use if you are deep inside algorithmic analysis or if you are trying to prove something about an algorithm, but if you are doing commercial software development the proof is in the pudding, and you are going to want to have actual performance numbers to make intelligent decisions. Cheers!
This could work for simple algorithms, but what about O(n^2 lg n), or O(n lg^2 n)? You could get fooled visually very easily. And if its a really bad algorithm, maybe it wouldn't return even on n=10.
Proof that this is undecidable: Suppose that we had some algorithm HALTS_IN_FN(Program, function) which determined whether a program halted in O(f(n)) for all n, for some function f. Let P be the following program: if(HALTS_IN_FN(P,f(n))) { while(1); } halt; Since the function and the program are fixed, HALTS_IN_FN on this input is constant time. If HALTS_IN_FN returns true, the program runs forever and of course does not halt in O(f(n)) for any f(n). If HALTS_IN_FN returns false, the program halts in O(1) time. Thus, we have a paradox, a contradiction, and so the program is undecidable.
A lot of people have commented that this is an inherently unsolvable problem in theory. Fair enough, but beyond that, even solving it for any but the most trivial cases would seem to be incredibly difficult. Say you have a program that has a set of nested loops, each based on the number of items in an array. O(n^2). But what if the inner loop is only run in a very specific set of circumstances? Say, on average, it's run in aprox log(n) cases. Suddenly our "obviously" O(n^2) algorithm is really O(n log n). Writing a program that could determine if the inner loop would be run, and how often, is potentially more difficult than the original problem. Remember O(N) isn't god; high constants can and will change the playing field. Quicksort algorithms are O(n log n) of course, but when the recursion gets small enough, say down to 20 items or so, many implementations of quicksort will change tactics to a separate algorithm as it's actually quicker to do a different type of sort, say insertion sort with worse O(N), but much smaller constant. So, understand your data, make educated guesses, and test.
I think it's pretty much impossible to do this automatically. Remember that O(g(n)) is the worst-case upper bound and many functions perform better than that for a lot of data sets. You'd have to find the worst-case data set for each one in order to compare them. That's a difficult task on its own for many algorithms.
You must also take care when running such benchmarks. Some algorithms will have a behavior heavily dependent on the input type. Take Quicksort for example. It is a worst-case O(n²), but usually O(nlogn). For two inputs of the same size. The traveling salesman is (I think, not sure) O(n²) (EDIT: the correct value is 0(n!) for the brute force algotithm) , but most algorithms get rather good approximated solutions much faster. This means that the the benchmarking structure has to most of the time be adapted on an ad hoc basis. Imagine writing something generic for the two examples mentioned. It would be very complex, probably unusable, and likely will be giving incorrect results anyway.
Jeffrey L Whitledge is correct. A simple reduction from the halting problem proves that this is undecidable... ALSO, if I could write this program, I'd use it to solve P vs NP, and have $1million... B-)
I'm using a big_O library (link here) that fits the change in execution time against independent variable n to infer the order of growth class O(). The package automatically suggests the best fitting class by measuring the residual from collected data against each class growth behavior. Check the code in this answer. Example of output, Measuring .columns[::-1] complexity against rapid increase in # rows -------------------------------------------------------------------------------- Big O() fits: Cubic: time = -0.017 + 0.00067*n^3 -------------------------------------------------------------------------------- Constant: time = 0.032 (res: 0.021) Linear: time = -0.051 + 0.024*n (res: 0.011) Quadratic: time = -0.026 + 0.0038*n^2 (res: 0.0077) Cubic: time = -0.017 + 0.00067*n^3 (res: 0.0052) Polynomial: time = -6.3 * x^1.5 (res: 6) Logarithmic: time = -0.026 + 0.053*log(n) (res: 0.015) Linearithmic: time = -0.024 + 0.012*n*log(n) (res: 0.0094) Exponential: time = -7 * 0.66^n (res: 3.6) --------------------------------------------------------------------------------
I guess this isn't possible in a fully automatic way since the type and structure of the input differs a lot between functions.
Well, since you can't prove whether or not a function even halts, I think you're asking a little much. Otherwise #Godeke has it.
I don't know what's your objective in doing this, but we had a similar problem in a course I was teaching. The students were required to implement something that works at a certain complexity. In order not to go over their solution manually, and read their code, we used the method #Godeke suggested. The objective was to find students who used linked list instead of a balansed search tree, or students who implemented bubble sort instead of heap sort (i.e. implementations that do not work in the required complexity - but without actually reading their code). Surprisingly, the results did not reveal students who cheated. That might be because our students are honest and want to learn (or just knew that we'll check this ;-) ). It is possible to miss cheating students if the inputs are small, or if the input itself is ordered or such. It is also possible to be wrong about students who did not cheat, but have large constant values. But in spite of the possible errors, it is well worth it, since it saves a lot of checking time.
As others have said, this is theoretically impossible. But in practice, you can make an educated guess as to whether a function is O(n) or O(n^2), as long as you don't mind being wrong sometimes. First time the algorithm, running it on input of various n. Plot the points on a log-log graph. Draw the best-fit line through the points. If the line fits all the points well, then the data suggests that the algorithm is O(n^k), where k is the slope of the line. I am not a statistician. You should take all this with a grain of salt. But I have actually done this in the context of automated testing for performance regressions. The patch here contains some JS code for it.
If you have lots of homogenious computational resources, I'd time them against several samples and do linear regression, then simply take the highest term.
It's easy to get an indication (e.g. "is the function linear? sub-linear? polynomial? exponential") It's hard to find the exact complexity. For example, here's a Python solution: you supply the function, and a function that creates parameters of size N for it. You get back a list of (n,time) values to plot, or to perform regression analysis. It times it once for speed, to get a really good indication it would have to time it many times to minimize interference from environmental factors (e.g. with the timeit module). import time def measure_run_time(func, args): start = time.time() func(*args) return time.time() - start def plot_times(func, generate_args, plot_sequence): return [ (n, measure_run_time(func, generate_args(n+1))) for n in plot_sequence ] And to use it to time bubble sort: def bubble_sort(l): for i in xrange(len(l)-1): for j in xrange(len(l)-1-i): if l[i+1] < l[i]: l[i],l[i+1] = l[i+1],l[i] import random def gen_args_for_sort(list_length): result = range(list_length) # list of 0..N-1 random.shuffle(result) # randomize order # should return a tuple of arguments return (result,) # timing for N = 1000, 2000, ..., 5000 times = plot_times(bubble_sort, gen_args_for_sort, xrange(1000,6000,1000)) import pprint pprint.pprint(times) This printed on my machine: [(1000, 0.078000068664550781), (2000, 0.34400010108947754), (3000, 0.7649998664855957), (4000, 1.3440001010894775), (5000, 2.1410000324249268)]