Calling back to method and do while loop - methods

I am a beginner/student struggling with some of the basic concepts. I
am trying to call back to my displaymenu method so that when a user
inputs the correct character, it prompts them to input the temperature
ints and then when finished, ask them to pick a temperature again
until they pick the quit option.
This is my code so far:
import java.util.Locale;
import java.util.Scanner;
public class project7 {
static Scanner kb = new Scanner(System.in);
public static int fartocel(int f){
f = ( f - 32 ) * 5 / 9;
return f;
}
public static int caltofar(int c){
c = c * 9 / 5 + 32;
return c;
}
public static char displaymenu(){
char pick;
boolean first;
first = false;
do {
System.out.println("\nF - Far ");
System.out.println("C - Cel ");
System.out.println("Q - quit");
System.out.print("\nPick: ");
pick = Character.toUpperCase(kb.next().charAt(0));
switch (pick) {
case 'C':
case 'F':
case 'Q':
first = true;
break;
default:
System.out.println("\nPlease choose F, C, or Q");
break;
}
}while (!first);
return pick;
}
public static void main(String[] args) {
int c;
int f;
String answer;
System.out.println("\n\nYou picked: " + displaymenu());
do {
System.out.print("Enter the Cel temp: ");
c = kb.nextInt();
System.out.println("The temp " + c + " Cel " + "is Far " + caltofar(c));
System.out.print("enter the Far temp: ");
f = kb.nextInt();
System.out.print("The temp " + f + "Far " + "is Cel " + fartocel(f));
System.out.println("\n\nTry again? Yes or No ");
answer = kb.next();
}
while (answer.equalsIgnoreCase("Yes"));
}
}

I am trying to call back to my displaymenu method
It's not advisable to use the phrase to call back here, since it might cause confusion with a callback function; just say call again. To do so, change
System.out.println("\n\nYou picked: " + displaymenu());
do {
…
System.out.println("\n\nTry again? Yes or No ");
answer = kb.next();
}
while (answer.equalsIgnoreCase("Yes"));
to
for (char picked; (picked = displaymenu()) != 'Q'; )
{
…
}

Related

Kattis - Generalized Recursive Functions WA

I have been desperately stuck on this question on Kattis here. The basic idea is that you are given a general formula for a valid two variable recursive function and then given that formula you are to evaluate the function of this function at various inputs. I have trawled through this question for over an hour and I was wondering if anyone could point me in the right direction (or give a counter-example) of why my answer is wrong. The code I used which got me a Wrong Answer verdict is shown below.
#include<bits/stdc++.h>
using namespace std;
long long dp[105][105];
int a[25];
int b[25];
long long rec(int x_in, int y_in, int coeffs, long long c) {
if(dp[x_in][y_in]!=-1){
return dp[x_in][y_in];
}
else {
long long ans = c;
for(int i=0; i<coeffs; ++i) {
int x_cell = max(0, x_in-a[i]);
int y_cell = max(0, y_in-b[i]);
ans+=rec(x_cell, y_cell, coeffs, c);
}
dp[x_in][y_in] = ans;
return dp[x_in][y_in];
}
}
int main() {
int n;
scanf("%d", &n);
string ex;
getline(cin, ex);
for(int caseno=0; caseno<n; ++caseno) {
memset(dp, -1, sizeof(dp));
if(caseno>0) printf("\n");
string coeffs_list;
getline(cin, coeffs_list);
int pairs = 0;
long long c, d;
char * dup = strdup(coeffs_list.c_str());
char * token = strtok(dup, " ") ;
while(token != NULL){
a[pairs] = atoi(token);
token = strtok(NULL, " ") ;
b[pairs] = atoi(token);
token = strtok(NULL, " ") ;
pairs++;
}
free(dup);
c= (long long) a[pairs-1];
d = (long long) b[pairs-1];
pairs--;
dp[0][0] = d;
for(int i=1; i<105; ++i) {dp[0][i] = d; dp[i][0]=d;}
string inputs;
getline(cin, inputs);
int x_i, y_i;
char * dup2 = strdup(inputs.c_str());
char * token2 = strtok(dup2, " ") ;
while(token2 != NULL){
x_i = atoi(token2);
token2 = strtok(NULL, " ") ;
y_i = atoi(token2);
token2 = strtok(NULL, " ") ;
printf("%lld\n", rec(x_i, y_i, pairs, c));
}
free(dup2);
}
}
As you can see the basic idea of what i did was to construct a dp table and evaluate the function accordingly. Thank you in advance for anyone that could help me over here.
The function can grow very fast, thus overflow a 64bit integer (you can check this by using assert(rec(...) >= 0) (not guaranteed but likely to fail for an overflow)). Use a custom BigInteger implementation or switch to Java/Python.
e.g. for n=20, a_i=1, b_i=0: f(x,y)=20*f(x-1,y)+c = O(20^x*(c+d))
This is also indicated by most solutions under stats using Java: https://open.kattis.com/problems/generalizedrecursivefunctions/statistics https://baylor.kattis.com/problems/generalizedrecursivefunctions/statistics

Trying TRIE DS implementation

So, I'tried implementing TRIE DS, and while the node in the tree gets the value of Words assigned after addWord ends, but when I traverse the tree, The value that prints is zero. What did I do wrong, unable to point out. Please can someone help.
#include<iostream>
#include<string>
using namespace std;
struct trie{
int words;
int prefixes;
trie* edges[26];
};
void addWord(trie* vertex, string word){
if(word.length() == 0){
vertex->words = vertex->words + 1;
}
else{
// cout<<word<<endl;
vertex->prefixes = vertex->prefixes + 1;
char k = word[0];
if(vertex->edges[k - 'a'] == NULL){
trie *n = (trie*)malloc(sizeof(trie));
n->words = 0;
n->prefixes = 0;
for(int i=0;i<26;i++)
vertex->edges[i] = NULL;
vertex->edges[k - 'a'] = n;
}
word.erase(0, 1);
addWord(vertex->edges[k - 'a'], word);
}
};
void traverse(trie *vertex){
if(vertex != NULL){
for(int i=0;i<26;i++){
if(vertex->edges[i] != NULL){
traverse(vertex->edges[i]);
cout<<char(i+'a')<<" - "<<vertex->prefixes<< " : "<<vertex->words<<endl;
}
}
}
};
int main(){
string word = "hello";
trie* head = (trie*)malloc(sizeof(trie));
for(int i=0;i<26;i++)
head->edges[i] = NULL;
head->words = 0;
head->prefixes = 0;
addWord(head, word);
string s = "lo";
traverse(head);
return 0;
}
There are two issues with code:
In your addWord function, inside else block, in the for loop, change vertex->edges[i] = NULL; to n->edges[i] = NULL;
The problem you asked for is in your traverse function. You are not printing the words count for node pointed by say last o, you are printing it for the node that have o as it's edge. So just change this:
cout<<char(i+'a')<<" - "<<vertex->prefixes<< " : "<<vertex->words<<endl;
to this:
cout<<char(i+'a')<<" - "<<vertex->edges[i]->prefixes<< " : "<<vertex->edges[i]->words<<endl;

Reverse the orders of words--time complexity?

Input: "My Name is Pritam"
Output: "Pritam is Name My"
I have written this so far, but I'm bit confused with time complexity
public string ReverseWordsInAString(string str)
{
char[] temp = str.ToCharArray();
int startIndex = 0;
int endIndex = str.Length - 1;
temp = ReverseString(temp, startIndex, endIndex);
endIndex = 0;
foreach (char c in temp)
{
if(c == ' ')
{
temp = ReverseString(temp, startIndex, endIndex-1);
startIndex = endIndex + 1;
}
if (endIndex == str.Length-1)
{
temp = ReverseString(temp, startIndex, endIndex);
}
endIndex++;
}
str = new string(temp);
return str;
}
public char[] ReverseString(char[] chr, int start, int end)
{
while (start < end)
{
char temp = chr[start];
chr[start] = chr[end];
chr[end] = temp;
start++;
end--;
}
return chr;
}
When I call ReverseString method from a for loop I think it no more a O(n) solution. Please correct me if I'm wrong. Does anyone have any better solution.
in Java
String str= "My Name is Pritam";
String arr[] = str.split(" ");
for(int i = arr.length-1 ; i >=0 ; i--){
System.out.println(arr[i]);
}
Your code is O(n). You can see this by looking at the number of swaps each element is involved in, which is 2 (once for the initial reverse of the entire string, second for the word-wise reversal). In addition the foreach loop iterates over each element exactly once.
In Ruby:
sentence = "My name is Pritam"
print sentence.split(" ").reverse.join(" ")
In C;
char *s = "My Name is Pritam", *t = s + strlen(s), *end = strchr(s,' ')-1;
while( t != end )
{
*(t = strrchr(t,' ')) = '\0';
printf( "%s ", --t+2 );
}
printf( "%s", s );
Possible duplicate, I had asked a similar question some time back. But the responses I received were very interesting, actually it did change the way complexity should be thought about ;).... Time Complexity
Split the string and push it to a stack . Pop elements from stack and add it to a new string. Requires extra space,but just posted because it could be a easy way to implement string reverse
public class StringReverse {
public static void main (String args[]){
String input = "My name is Pritam";
Stack<String> stack = new Stack<String>();
String[] strings= input.split(" ");
for(String str :strings){
stack.push(str);
}
String reverse = "" ;
while(!stack.isEmpty()){
reverse = reverse + " " + stack.pop();
}
System.out.println(reverse);
}
}
in Python,
sentence = "My name is Pritam"
' '.join(sentence.split(" ")[::-1])

Microsoft Interview Question : Write an efficient string matching program for string matching?

Write a time efficient C program that takes two strings (string a, string b) and gives the first occurence of string b in string a.
Many algorithm is on string matching. For example,Knuth–Morris–Pratt algorithm, Boyer-Moore algorithm. Just refer to any one algorithm handbook.
I think the following should achieve what you intend to do -
int main(int argc, char *argv[])
{
string A, B;
size_t pos;
while (true)
{
cout << endl << "Enter string: ";
getline(cin,A);
cout << "Enter substring to find: ";
getline(cin,B);
if ((A.size() > 0) && (B.size() > 0))
{
cout << "\"" << B << "\" is";
if ((pos = find(A,B)) == string::npos)
{
cout << " not";
}
cout << " a substring of \"" << A<< "\"";
if (pos != string::npos)
{
cout << ", found at index " << pos;
}
cout << endl;
}
}
return 0;
}
Wikipedia knows all
Try using this:
public class client {
/**
* #param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(poSubString("bac","ba"));
}
public static int poSubString(String a, String b){
if (a.length()<b.length())
return -1;
int pointerA=0;
int pointerB=0;
while(pointerA+b.length()<=a.length() && pointerB<b.length()){
if (a.charAt(pointerA+pointerB)==b.charAt(pointerB))
pointerB++;
else{
pointerB=0;
pointerA++;
}
}
if (pointerB==b.length())
return pointerA;
else
return -1;
}
}
Write an efficient C program that takes two strings (string a, string b) and gives the first occurence of string b in string a.
It doesnt say that you are doing repeated matching against either string, or any useful insight about one being particularly short, specific content, or there being plenty of startup time then a trigger event after which a fast-as-possible comparison is needed, so: all the sophisticated algorithms mentioned in other answers probably are not sought by the interviewer.
I read "efficient" to mean that the algorithm is not iterating and invoking an out-of-line strcmp(), mindful not to repeatedly call strlen(), preferably returns false immediately if the equality comparison exhausts "haystack" before "needle". Honestly, if it is an early screening interview, then enough people would fail to implement something like that well - it is very believable that that is all they wanted without going into advanced prior indexing or state machines.
If you're interested, have a look at Michael Abrash's chapter(PDF) on string searching in his "Graphics Programming Black Book". The rest of the book can be freely accessed here.
He starts out with a nice routine in C, then improves it and implements it in assembly. Although not really in the scope of the interview question, I think most interviewers would be impressed with an explanation of how to optimise your answer.
The question doesn't specify a result for if B does not occur in A, nor does it require the position of the occurrence. So it is safe to assume that A contains B. Hence the program should return string B, as the value of the first occurrence of B in A will be equal to B.
I believe much of Windows NT's POSIX compliance was built on similar principles.
In java
package com.salpe.ds;
public class TestContainsString {
public static void main(String[] args) {
char[] string1 = new char[] { 'a', 'b', 'c', 'd', 'e', 'x', 'f', 'g',
'e', 'x' };
char[] string2 = new char[] { 'e', 'x' };
char[] longerChar;
char[] shortChar;
if (string1.length > string2.length) {
longerChar = string1;
shortChar = string2;
} else {
longerChar = string2;
shortChar = string1;
}
int j = 0;
int totalOccurences = 0;
for (int i = 0; i < longerChar.length; i++) {
if (longerChar[i] == shortChar[j]) {
j++;
} else {
j = 0;
}
if ((j) == shortChar.length) {
System.out.println("Found");
j = 0;
totalOccurences++;
}
}
System.out
.println(String.valueOf(shortChar) + " Found in "
+ String.valueOf(longerChar) + " " + totalOccurences
+ " times");
}
}

finding if two words are anagrams of each other

I am looking for a method to find if two strings are anagrams of one another.
Ex: string1 - abcde
string2 - abced
Ans = true
Ex: string1 - abcde
string2 - abcfed
Ans = false
the solution i came up with so for is to sort both the strings and compare each character from both strings till the end of either strings.It would be O(logn).I am looking for some other efficient method which doesn't change the 2 strings being compared
Count the frequency of each character in the two strings. Check if the two histograms match. O(n) time, O(1) space (assuming ASCII) (Of course it is still O(1) space for Unicode but the table will become very large).
Get table of prime numbers, enough to map each prime to every character. So start from 1, going through line, multiply the number by the prime representing current character. Number you'll get is only depend on characters in string but not on their order, and every unique set of characters correspond to unique number, as any number may be factored in only one way. So you can just compare two numbers to say if a strings are anagrams of each other.
Unfortunately you have to use multiple precision (arbitrary-precision) integer arithmetic to do this, or you will get overflow or rounding exceptions when using this method.
For this you may use libraries like BigInteger, GMP, MPIR or IntX.
Pseudocode:
prime[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101}
primehash(string)
Y = 1;
foreach character in string
Y = Y * prime[character-'a']
return Y
isanagram(str1, str2)
return primehash(str1)==primehash(str2)
Create a Hashmap where key - letter and value - frequencey of letter,
for first string populate the hashmap (O(n))
for second string decrement count and remove element from hashmap O(n)
if hashmap is empty, the string is anagram otherwise not.
The steps are:
check the length of of both the words/strings if they are equal then only proceed to check for anagram else do nothing
sort both the words/strings and then compare
JAVA CODE TO THE SAME:
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package anagram;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
/**
*
* #author Sunshine
*/
public class Anagram {
/**
* #param args the command line arguments
*/
public static void main(String[] args) throws IOException {
// TODO code application logic here
System.out.println("Enter the first string");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String s1 = br.readLine().toLowerCase();
System.out.println("Enter the Second string");
BufferedReader br2 = new BufferedReader(new InputStreamReader(System.in));
String s2 = br2.readLine().toLowerCase();
char c1[] = null;
char c2[] = null;
if (s1.length() == s2.length()) {
c1 = s1.toCharArray();
c2 = s2.toCharArray();
Arrays.sort(c1);
Arrays.sort(c2);
if (Arrays.equals(c1, c2)) {
System.out.println("Both strings are equal and hence they have anagram");
} else {
System.out.println("Sorry No anagram in the strings entred");
}
} else {
System.out.println("Sorry the string do not have anagram");
}
}
}
C#
public static bool AreAnagrams(string s1, string s2)
{
if (s1 == null) throw new ArgumentNullException("s1");
if (s2 == null) throw new ArgumentNullException("s2");
var chars = new Dictionary<char, int>();
foreach (char c in s1)
{
if (!chars.ContainsKey(c))
chars[c] = 0;
chars[c]++;
}
foreach (char c in s2)
{
if (!chars.ContainsKey(c))
return false;
chars[c]--;
}
return chars.Values.All(i => i == 0);
}
Some tests:
[TestMethod]
public void TestAnagrams()
{
Assert.IsTrue(StringUtil.AreAnagrams("anagramm", "nagaramm"));
Assert.IsTrue(StringUtil.AreAnagrams("anzagramm", "nagarzamm"));
Assert.IsTrue(StringUtil.AreAnagrams("anz121agramm", "nag12arz1amm"));
Assert.IsFalse(StringUtil.AreAnagrams("anagram", "nagaramm"));
Assert.IsFalse(StringUtil.AreAnagrams("nzagramm", "nagarzamm"));
Assert.IsFalse(StringUtil.AreAnagrams("anzagramm", "nag12arz1amm"));
}
Code to find whether two words are anagrams:
Logic explained already in few answers and few asking for the code. This solution produce the result in O(n) time.
This approach counts the no of occurrences of each character and store it in the respective ASCII location for each string. And then compare the two array counts. If it is not equal the given strings are not anagrams.
public boolean isAnagram(String str1, String str2)
{
//To get the no of occurrences of each character and store it in their ASCII location
int[] strCountArr1=getASCIICountArr(str1);
int[] strCountArr2=getASCIICountArr(str2);
//To Test whether the two arrays have the same count of characters. Array size 256 since ASCII 256 unique values
for(int i=0;i<256;i++)
{
if(strCountArr1[i]!=strCountArr2[i])
return false;
}
return true;
}
public int[] getASCIICountArr(String str)
{
char c;
//Array size 256 for ASCII
int[] strCountArr=new int[256];
for(int i=0;i<str.length();i++)
{
c=str.charAt(i);
c=Character.toUpperCase(c);// If both the cases are considered to be the same
strCountArr[(int)c]++; //To increment the count in the character's ASCII location
}
return strCountArr;
}
Using an ASCII hash-map that allows O(1) look-up for each char.
The java example listed above is converting to lower-case that seems incomplete. I have an example in C that simply initializes a hash-map array for ASCII values to '-1'
If string2 is different in length than string 1, no anagrams
Else, we update the appropriate hash-map values to 0 for each char in string1 and string2
Then for each char in string1, we update the count in hash-map. Similarily, we decrement the value of the count for each char in string2.
The result should have values set to 0 for each char if they are anagrams. if not, some positive value set by string1 remains
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ARRAYMAX 128
#define True 1
#define False 0
int isAnagram(const char *string1,
const char *string2) {
int str1len = strlen(string1);
int str2len = strlen(string2);
if (str1len != str2len) /* Simple string length test */
return False;
int * ascii_hashtbl = (int * ) malloc((sizeof(int) * ARRAYMAX));
if (ascii_hashtbl == NULL) {
fprintf(stderr, "Memory allocation failed\n");
return -1;
}
memset((void *)ascii_hashtbl, -1, sizeof(int) * ARRAYMAX);
int index = 0;
while (index < str1len) { /* Populate hash_table for each ASCII value
in string1*/
ascii_hashtbl[(int)string1[index]] = 0;
ascii_hashtbl[(int)string2[index]] = 0;
index++;
}
index = index - 1;
while (index >= 0) {
ascii_hashtbl[(int)string1[index]]++; /* Increment something */
ascii_hashtbl[(int)string2[index]]--; /* Decrement something */
index--;
}
/* Use hash_table to compare string2 */
index = 0;
while (index < str1len) {
if (ascii_hashtbl[(int)string1[index]] != 0) {
/* some char is missing in string2 from string1 */
free(ascii_hashtbl);
ascii_hashtbl = NULL;
return False;
}
index++;
}
free(ascii_hashtbl);
ascii_hashtbl = NULL;
return True;
}
int main () {
char array1[ARRAYMAX], array2[ARRAYMAX];
int flag;
printf("Enter the string\n");
fgets(array1, ARRAYMAX, stdin);
printf("Enter another string\n");
fgets(array2, ARRAYMAX, stdin);
array1[strcspn(array1, "\r\n")] = 0;
array2[strcspn(array2, "\r\n")] = 0;
flag = isAnagram(array1, array2);
if (flag == 1)
printf("%s and %s are anagrams.\n", array1, array2);
else if (flag == 0)
printf("%s and %s are not anagrams.\n", array1, array2);
return 0;
}
let's take a question: Given two strings s and t, write a function to determine if t is an anagram of s.
For example,
s = "anagram", t = "nagaram", return true.
s = "rat", t = "car", return false.
Method 1(Using HashMap ):
public class Method1 {
public static void main(String[] args) {
String a = "protijayi";
String b = "jayiproti";
System.out.println(isAnagram(a, b ));// output => true
}
private static boolean isAnagram(String a, String b) {
Map<Character ,Integer> map = new HashMap<>();
for( char c : a.toCharArray()) {
map.put(c, map.getOrDefault(c, 0 ) + 1 );
}
for(char c : b.toCharArray()) {
int count = map.getOrDefault(c, 0);
if(count == 0 ) {return false ; }
else {map.put(c, count - 1 ) ; }
}
return true;
}
}
Method 2 :
public class Method2 {
public static void main(String[] args) {
String a = "protijayi";
String b = "jayiproti";
System.out.println(isAnagram(a, b));// output=> true
}
private static boolean isAnagram(String a, String b) {
int[] alphabet = new int[26];
for(int i = 0 ; i < a.length() ;i++) {
alphabet[a.charAt(i) - 'a']++ ;
}
for (int i = 0; i < b.length(); i++) {
alphabet[b.charAt(i) - 'a']-- ;
}
for( int w : alphabet ) {
if(w != 0 ) {return false;}
}
return true;
}
}
Method 3 :
public class Method3 {
public static void main(String[] args) {
String a = "protijayi";
String b = "jayiproti";
System.out.println(isAnagram(a, b ));// output => true
}
private static boolean isAnagram(String a, String b) {
char[] ca = a.toCharArray() ;
char[] cb = b.toCharArray();
Arrays.sort( ca );
Arrays.sort( cb );
return Arrays.equals(ca , cb );
}
}
Method 4 :
public class AnagramsOrNot {
public static void main(String[] args) {
String a = "Protijayi";
String b = "jayiProti";
isAnagram(a, b);
}
private static void isAnagram(String a, String b) {
Map<Integer, Integer> map = new LinkedHashMap<>();
a.codePoints().forEach(code -> map.put(code, map.getOrDefault(code, 0) + 1));
System.out.println(map);
b.codePoints().forEach(code -> map.put(code, map.getOrDefault(code, 0) - 1));
System.out.println(map);
if (map.values().contains(0)) {
System.out.println("Anagrams");
} else {
System.out.println("Not Anagrams");
}
}
}
In Python:
def areAnagram(a, b):
if len(a) != len(b): return False
count1 = [0] * 256
count2 = [0] * 256
for i in a:count1[ord(i)] += 1
for i in b:count2[ord(i)] += 1
for i in range(256):
if(count1[i] != count2[i]):return False
return True
str1 = "Giniiii"
str2 = "Protijayi"
print(areAnagram(str1, str2))
Let's take another famous Interview Question: Group the Anagrams from a given String:
public class GroupAnagrams {
public static void main(String[] args) {
String a = "Gini Gina Protijayi iGin aGin jayiProti Soudipta";
Map<String, List<String>> map = Arrays.stream(a.split(" ")).collect(Collectors.groupingBy(GroupAnagrams::sortedString));
System.out.println("MAP => " + map);
map.forEach((k,v) -> System.out.println(k +" and the anagrams are =>" + v ));
/*
Look at the Map output:
MAP => {Giin=[Gini, iGin], Paiijorty=[Protijayi, jayiProti], Sadioptu=[Soudipta], Gain=[Gina, aGin]}
As we can see, there are multiple Lists. Hence, we have to use a flatMap(List::stream)
Now, Look at the output:
Paiijorty and the anagrams are =>[Protijayi, jayiProti]
Now, look at this output:
Sadioptu and the anagrams are =>[Soudipta]
List contains only word. No anagrams.
That means we have to work with map.values(). List contains all the anagrams.
*/
String stringFromMapHavingListofLists = map.values().stream().flatMap(List::stream).collect(Collectors.joining(" "));
System.out.println(stringFromMapHavingListofLists);
}
public static String sortedString(String a) {
String sortedString = a.chars().sorted()
.collect(StringBuilder::new, StringBuilder::appendCodePoint, StringBuilder::append).toString();
return sortedString;
}
/*
* The output : Gini iGin Protijayi jayiProti Soudipta Gina aGin
* All the anagrams are side by side.
*/
}
Now to Group Anagrams in Python is again easy.We have to :
Sort the lists. Then, Create a dictionary. Now dictionary will tell us where are those anagrams are( Indices of Dictionary). Then values of the dictionary is the actual indices of the anagrams.
def groupAnagrams(words):
# sort each word in the list
A = [''.join(sorted(word)) for word in words]
dict = {}
for indexofsamewords, names in enumerate(A):
dict.setdefault(names, []).append(indexofsamewords)
print(dict)
#{'AOOPR': [0, 2, 5, 11, 13], 'ABTU': [1, 3, 4], 'Sorry': [6], 'adnopr': [7], 'Sadioptu': [8, 16], ' KPaaehiklry': [9], 'Taeggllnouy': [10], 'Leov': [12], 'Paiijorty': [14, 18], 'Paaaikpr': [15], 'Saaaabhmryz': [17], ' CNaachlortttu': [19], 'Saaaaborvz': [20]}
for index in dict.values():
print([words[i] for i in index])
if __name__ == '__main__':
# list of words
words = ["ROOPA","TABU","OOPAR","BUTA","BUAT" , "PAROO","Soudipta",
"Kheyali Park", "Tollygaunge", "AROOP","Love","AOORP", "Protijayi","Paikpara","dipSouta","Shyambazaar",
"jayiProti", "North Calcutta", "Sovabazaar"]
groupAnagrams(words)
The Output :
['ROOPA', 'OOPAR', 'PAROO', 'AROOP', 'AOORP']
['TABU', 'BUTA', 'BUAT']
['Soudipta', 'dipSouta']
['Kheyali Park']
['Tollygaunge']
['Love']
['Protijayi', 'jayiProti']
['Paikpara']
['Shyambazaar']
['North Calcutta']
['Sovabazaar']
Another Important Anagram Question : Find the Anagram occuring Max. number of times.
In the Example, ROOPA is the word which has occured maximum number of times.
Hence, ['ROOPA' 'OOPAR' 'PAROO' 'AROOP' 'AOORP'] will be the final output.
from sqlite3 import collections
from statistics import mode, mean
import numpy as np
# list of words
words = ["ROOPA","TABU","OOPAR","BUTA","BUAT" , "PAROO","Soudipta",
"Kheyali Park", "Tollygaunge", "AROOP","Love","AOORP",
"Protijayi","Paikpara","dipSouta","Shyambazaar",
"jayiProti", "North Calcutta", "Sovabazaar"]
print(".....Method 1....... ")
sortedwords = [''.join(sorted(word)) for word in words]
print(sortedwords)
print("...........")
LongestAnagram = np.array(words)[np.array(sortedwords) == mode(sortedwords)]
# Longest anagram
print("Longest anagram by Method 1:")
print(LongestAnagram)
print(".....................................................")
print(".....Method 2....... ")
A = [''.join(sorted(word)) for word in words]
dict = {}
for indexofsamewords,samewords in enumerate(A):
dict.setdefault(samewords,[]).append(samewords)
#print(dict)
#{'AOOPR': ['AOOPR', 'AOOPR', 'AOOPR', 'AOOPR', 'AOOPR'], 'ABTU': ['ABTU', 'ABTU', 'ABTU'], 'Sadioptu': ['Sadioptu', 'Sadioptu'], ' KPaaehiklry': [' KPaaehiklry'], 'Taeggllnouy': ['Taeggllnouy'], 'Leov': ['Leov'], 'Paiijorty': ['Paiijorty', 'Paiijorty'], 'Paaaikpr': ['Paaaikpr'], 'Saaaabhmryz': ['Saaaabhmryz'], ' CNaachlortttu': [' CNaachlortttu'], 'Saaaaborvz': ['Saaaaborvz']}
aa = max(dict.items() , key = lambda x : len(x[1]))
print("aa => " , aa)
word, anagrams = aa
print("Longest anagram by Method 2:")
print(" ".join(anagrams))
The Output :
.....Method 1.......
['AOOPR', 'ABTU', 'AOOPR', 'ABTU', 'ABTU', 'AOOPR', 'Sadioptu', ' KPaaehiklry', 'Taeggllnouy', 'AOOPR', 'Leov', 'AOOPR', 'Paiijorty', 'Paaaikpr', 'Sadioptu', 'Saaaabhmryz', 'Paiijorty', ' CNaachlortttu', 'Saaaaborvz']
...........
Longest anagram by Method 1:
['ROOPA' 'OOPAR' 'PAROO' 'AROOP' 'AOORP']
.....................................................
.....Method 2.......
aa => ('AOOPR', ['AOOPR', 'AOOPR', 'AOOPR', 'AOOPR', 'AOOPR'])
Longest anagram by Method 2:
AOOPR AOOPR AOOPR AOOPR AOOPR
Well you can probably improve the best case and average case substantially just by checking the length first, then a quick checksum on the digits (not something complex, as that will probably be worse order than the sort, just a summation of ordinal values), then sort, then compare.
If the strings are very short the checksum expense will be not greatly dissimilar to the sort in many languages.
How about this?
a = "lai d"
b = "di al"
sorteda = []
sortedb = []
for i in a:
if i != " ":
sorteda.append(i)
if c == len(b):
for x in b:
c -= 1
if x != " ":
sortedb.append(x)
sorteda.sort(key = str.lower)
sortedb.sort(key = str.lower)
print sortedb
print sorteda
print sortedb == sorteda
How about Xor'ing both the strings??? This will definitely be of O(n)
char* arr1="ab cde";
int n1=strlen(arr1);
char* arr2="edcb a";
int n2=strlen(arr2);
// to check for anagram;
int c=0;
int i=0, j=0;
if(n1!=n2)
printf("\nNot anagram");
else {
while(i<n1 || j<n2)
{
c^= ((int)arr1[i] ^ (int)arr2[j]);
i++;
j++;
}
}
if(c==0) {
printf("\nAnagram");
}
else printf("\nNot anagram");
}
static bool IsAnagram(string s1, string s2)
{
if (s1.Length != s2.Length)
return false;
else
{
int sum1 = 0;
for (int i = 0; i < s1.Length; i++)
sum1 += (int)s1[i]-(int)s2[i];
if (sum1 == 0)
return true;
else
return false;
}
}
For known (and small) sets of valid letters (e.g. ASCII) use a table with counts associated with each valid letter. First string increments counts, second string decrements counts. Finally iterate through the table to see if all counts are zero (strings are anagrams) or there are non-zero values (strings are not anagrams). Make sure to convert all characters to uppercase (or lowercase, all the same) and to ignore white space.
For a large set of valid letters, such as Unicode, do not use table but rather use a hash table. It has O(1) time to add, query and remove and O(n) space. Letters from first string increment count, letters from second string decrement count. Count that becomes zero is removed form the hash table. Strings are anagrams if at the end hash table is empty. Alternatively, search terminates with negative result as soon as any count becomes negative.
Here is the detailed explanation and implementation in C#: Testing If Two Strings are Anagrams
If strings have only ASCII characters:
create an array of 256 length
traverse the first string and increment counter in the array at index = ascii value of the character. also keep counting characters to find length when you reach end of string
traverse the second string and decrement counter in the array at index = ascii value of the character. If the value is ever 0 before decrementing, return false since the strings are not anagrams. also, keep track of the length of this second string.
at the end of the string traversal, if lengths of the two are equal, return true, else, return false.
If string can have unicode characters, then use a hash map instead of an array to keep track of the frequency. Rest of the algorithm remains same.
Notes:
calculating length while adding characters to array ensures that we traverse each string only once.
Using array in case of an ASCII only string optimizes space based on the requirement.
I guess your sorting algorithm is not really O(log n), is it?
The best you can get is O(n) for your algorithm, because you have to check every character.
You might use two tables to store the counts of each letter in every word, fill it with O(n) and compare it with O(1).
It seems that the following implementation works too, can you check?
int histogram[256] = {0};
for (int i = 0; i < strlen(str1); ++i) {
/* Just inc and dec every char count and
* check the histogram against 0 in the 2nd loop */
++histo[str1[i]];
--histo[str2[i]];
}
for (int i = 0; i < 256; ++i) {
if (histo[i] != 0)
return 0; /* not an anagram */
}
return 1; /* an anagram */
/* Program to find the strings are anagram or not*/
/* Author Senthilkumar M*/
Eg.
Anagram:
str1 = stackoverflow
str2 = overflowstack
Not anagram:`enter code here`
str1 = stackforflow
str2 = stacknotflow
int is_anagram(char *str1, char *str2)
{
int l1 = strlen(str1);
int l2 = strlen(str2);
int s1 = 0, s2 = 0;
int i = 0;
/* if both the string are not equal it is not anagram*/
if(l1 != l2) {
return 0;
}
/* sum up the character in the strings
if the total sum of the two strings is not equal
it is not anagram */
for( i = 0; i < l1; i++) {
s1 += str1[i];
s2 += str2[i];
}
if(s1 != s2) {
return 0;
}
return 1;
}
If both strings are of equal length proceed, if not then the strings are not anagrams.
Iterate each string while summing the ordinals of each character. If the sums are equal then the strings are anagrams.
Example:
public Boolean AreAnagrams(String inOne, String inTwo) {
bool result = false;
if(inOne.Length == inTwo.Length) {
int sumOne = 0;
int sumTwo = 0;
for(int i = 0; i < inOne.Length; i++) {
sumOne += (int)inOne[i];
sumTwo += (int)inTwo[i];
}
result = sumOne == sumTwo;
}
return result;
}
implementation in Swift 3:
func areAnagrams(_ str1: String, _ str2: String) -> Bool {
return dictionaryMap(forString: str1) == dictionaryMap(forString: str2)
}
func dictionaryMap(forString str: String) -> [String : Int] {
var dict : [String : Int] = [:]
for var i in 0..<str.characters.count {
if let count = dict[str[i]] {
dict[str[i]] = count + 1
}else {
dict[str[i]] = 1
}
}
return dict
}
//To easily subscript characters
extension String {
subscript(i: Int) -> String {
return String(self[index(startIndex, offsetBy: i)])
}
}
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Scanner;
/**
* --------------------------------------------------------------------------
* Finding Anagrams in the given dictionary. Anagrams are words that can be
* formed from other words Ex :The word "words" can be formed using the word
* "sword"
* --------------------------------------------------------------------------
* Input : if choose option 2 first enter no of word want to compare second
* enter word ex:
*
* Enter choice : 1:To use Test Cases 2: To give input 2 Enter the number of
* words in dictionary
* 6
* viq
* khan
* zee
* khan
* am
*
* Dictionary : [ viq khan zee khan am]
* Anagrams 1:[khan, khan]
*
*/
public class Anagrams {
public static void main(String args[]) {
// User Input or just use the testCases
int choice;
#SuppressWarnings("resource")
Scanner scan = new Scanner(System.in);
System.out.println("Enter choice : \n1:To use Test Cases 2: To give input");
choice = scan.nextInt();
switch (choice) {
case 1:
testCaseRunner();
break;
case 2:
userInput();
default:
break;
}
}
private static void userInput() {
#SuppressWarnings("resource")
Scanner scan = new Scanner(System.in);
System.out.println("Enter the number of words in dictionary");
int number = scan.nextInt();
String dictionary[] = new String[number];
//
for (int i = 0; i < number; i++) {
dictionary[i] = scan.nextLine();
}
printAnagramsIn(dictionary);
}
/**
* provides a some number of dictionary of words
*/
private static void testCaseRunner() {
String dictionary[][] = { { "abc", "cde", "asfs", "cba", "edcs", "name" },
{ "name", "mane", "string", "trings", "embe" } };
for (int i = 0; i < dictionary.length; i++) {
printAnagramsIn(dictionary[i]);
}
}
/**
* Prints the set of anagrams found the give dictionary
*
* logic is sorting the characters in the given word and hashing them to the
* word. Data Structure: Hash[sortedChars] = word
*/
private static void printAnagramsIn(String[] dictionary) {
System.out.print("Dictionary : [");// + dictionary);
for (String each : dictionary) {
System.out.print(each + " ");
}
System.out.println("]");
//
Map<String, ArrayList<String>> map = new LinkedHashMap<String, ArrayList<String>>();
// review comment: naming convention: dictionary contains 'word' not
// 'each'
for (String each : dictionary) {
char[] sortedWord = each.toCharArray();
// sort dic value
Arrays.sort(sortedWord);
//input word
String sortedString = new String(sortedWord);
//
ArrayList<String> list = new ArrayList<String>();
if (map.keySet().contains(sortedString)) {
list = map.get(sortedString);
}
list.add(each);
map.put(sortedString, list);
}
// print anagram
int i = 1;
for (String each : map.keySet()) {
if (map.get(each).size() != 1) {
System.out.println("Anagrams " + i + ":" + map.get(each));
i++;
}
}
}
}
I just had an interview and 'SolutionA' was basically my solution.
Seems to hold.
It might also work to sum all characters, or the hashCodes of each character, but it would still be at least O(n).
/**
* Using HashMap
*
* O(a + b + b + b) = O(a + 3*b) = O( 4n ) if a and b are equal. Meaning O(n) in total.
*/
public static final class SolutionA {
//
private static boolean isAnagram(String a, String b) {
if ( a.length() != b.length() ) return false;
HashMap<Character, Integer> aa = toHistogram(a);
HashMap<Character, Integer> bb = toHistogram(b);
return isHistogramsEqual(aa, bb);
}
private static HashMap<Character, Integer> toHistogram(String characters) {
HashMap<Character, Integer> histogram = new HashMap<>();
int i = -1; while ( ++i < characters.length() ) {
histogram.compute(characters.charAt(i), (k, v) -> {
if ( v == null ) v = 0;
return v+1;
});
}
return histogram;
}
private static boolean isHistogramsEqual(HashMap<Character, Integer> a, HashMap<Character, Integer> b) {
for ( Map.Entry<Character, Integer> entry : b.entrySet() ) {
Integer aa = a.get(entry.getKey());
Integer bb = entry.getValue();
if ( !Objects.equals(aa, bb) ) {
return false;
}
}
return true;
}
public static void main(String[] args) {
System.out.println(isAnagram("abc", "cba"));
System.out.println(isAnagram("abc", "cbaa"));
System.out.println(isAnagram("abcc", "cba"));
System.out.println(isAnagram("abcd", "cba"));
System.out.println(isAnagram("twelve plus one", "eleven plus two"));
}
}
I've provided a hashCode() based implementation as well. Seems to hold as well.
/**
* Using hashCode()
*
* O(a + b) minimum + character.hashCode() calculation, the latter might be cheap though. Native implementation.
*
* Risk for collision albeit small.
*/
public static final class SolutionB {
public static void main(String[] args) {
System.out.println(isAnagram("abc", "cba"));
System.out.println(isAnagram("abc", "cbaa"));
System.out.println(isAnagram("abcc", "cba"));
System.out.println(isAnagram("abcd", "cba"));
System.out.println(isAnagram("twelve plus one", "eleven plus two"));
}
private static boolean isAnagram(String a, String b) {
if ( a.length() != b.length() ) return false;
return toHashcode(a) == toHashcode(b);
}
private static long toHashcode(String str) {
long sum = 0; int i = -1; while ( ++i < str.length() ) {
sum += Objects.hashCode( str.charAt(i) );
}
return sum;
}
}
in java we can also do it like this and its very simple logic
import java.util.*;
class Anagram
{
public static void main(String args[]) throws Exception
{
Boolean FLAG=true;
Scanner sc= new Scanner(System.in);
System.out.println("Enter 1st string");
String s1=sc.nextLine();
System.out.println("Enter 2nd string");
String s2=sc.nextLine();
int i,j;
i=s1.length();
j=s2.length();
if(i==j)
{
for(int k=0;k<i;k++)
{
for(int l=0;l<i;l++)
{
if(s1.charAt(k)==s2.charAt(l))
{
FLAG=true;
break;
}
else
FLAG=false;
}
}
}
else
FLAG=false;
if(FLAG)
System.out.println("Given Strings are anagrams");
else
System.out.println("Given Strings are not anagrams");
}
}
How about converting into the int value of the character and sum up :
If the value of sum are equals then they are anagram to each other.
def are_anagram1(s1, s2):
return [False, True][sum([ord(x) for x in s1]) == sum([ord(x) for x in s2])]
s1 = 'james'
s2 = 'amesj'
print are_anagram1(s1,s2)
This solution works only for 'A' to 'Z' and 'a' to 'z'.

Resources