I have an assignment to analyse and implement an algorithm for finding the maximum independent set of a graph, and I've come to the time complexity part of said algorithm. I've deduced it is as follows:
T(n) = T(n-1) + T(n-3) + O(n^3) + O(n^2)
I've figured some other similar recursive algorithms out before, but I got stuck several times with this one. I think it's supposed to turn out to be ~O(2^n).
Can someone help me get the solution?
Edit: I just double checked it the solution is supposed to be O(1.8^n). Any way to get to that solution?
Since O(n³) + O(n²) = O(n³) = O(f(n)) where f(n) = n³ − 12n² + 30n − 28,
there exists some constant γ > 0 such that we can overestimate the
original recurrence T as a concrete linear non-homogeneous recurrence
T′:
T′(n) = T′(n−1) + T′(n−3) + γf(n).
We follow the usual playbook, focusing on the homogeneous part first
(same recurrence but without γn³). The characteristic polynomial is x³ −
x² − 1. Letting α be any zero of this polynomial, the function
αn satisfies
αn = αn−1 + αn−3,
Assuming that the base case values are positive, the growth rate of the
homogeneous part will be Θ(αn) where α = 1.46557… is the zero
of maximum argument.
We also have to deal with the non-homogeneous part, but it turns out not
to matter asymptotically. By design we have f(n) = (n−1)³ + (n−3)³ − n³,
so letting U(n) = βαn − γn3, we can verify that
U(n−1) + U(n−3) + γn³ = β(αn−1 + αn−3) −
γ((n−1)³ + (n−3)³ − f(n)) = βαn − γn³ = U(n)
is a solution for T′, keeping us in the same asymptotic class.
If we draw the recursion tree, it will look something like this, For simplicity, lets every node has 2 child nodes and the height of this tree is n until it reaches the base case. As it's a binary tree the number of nodes will be (2^n)-1.
So the complexity for T(n) = T(n-1) + T(n-3) is O(2^n).
Now the overall complexity is O(2^N) + O(n^3) + O (n^2) = O(2^N)
Related
When using the substitution method to find the time complexity of recursive functions, why do we to prove the exact form and can't use the asymptotic notations as they are defined. An example from the book "Introduction to Algorithms" at page 86:
T(n) ≤ 2(c⌊n/2⌋) + n
≤ cn + n
= O(n) wrong!!
Why is this wrong?
From the definition of Big-O: O(g(n)) = {f(n): there exist positive constants c2 and n0 such that 0 ≤ f(n) ≤ c2g(n) for all n > n0}, the solution seems right.
Let's say f(n) = cn + n = n(c + 1), and g(n) = n. Then n(c + 1) ≤ c2n if c2 ≥ c + 1. => f(n) = O(n).
Is it wrong because f(n) actually is T(n) and not cn + n, and instead g(n) = cn + n??
I would really appreciate a helpful answer.
At page 2 in this paper the problem is describe. The reason why this solution is wrong is because the extra n in cn + n adds up in every recursive level. As the paper said "over many recursive calls, those “plus ones” add up"
Edit (Have more time to answer probably).
What I tried to do in the question was to solve the problem by induction. This means that I show that the next recursion still is true for my time complexity, which would mean that it would hold for the next recursion after that and so on. However this is only true if the time complexity I calculated is lower than my guess, in this case cn. For example cn + n is larger than cn and and my proof therefore fails. This is because, if I now let the recursion go on one more time I start with cn + n. This would than be calculated to c(cn + n) + n = n * c^2 + cn + n. This would increase for every recursive level and would not grow with O(n). It therefore fails. If however my proof was calculated to cn or lower(imagine it), then the next level would be cn or lower, just as the following one and so on. This leads to O(n). In short the calculation needs to be lower or equal to the quest.
How to calculate time complexity of recurrence relation f(n) = f(n/2) + f(n/3). We have base case at n=1 and n=0.
How to calculate time complexity for general case i.e f(n) = f(n/x) + f(n/y), where x<n and y<n.
Edit-1 :(after first answer posted) every number considered is integer.
Edit-2 :(after first answer posted) I like the answer given by Mbo but is it possible to answer this without using any fancy theorem like master theorem etc.Like by making tree etc.
However users are free to answer the way they like and i will try to understand.
In "layman terms" you can get dependence with larger coefficient:
T(n) = T(n/2) + T(n/2) + O(1)
build call tree for n=2^k and see that the last tree level contains 2^k items, higher level 2^k-1 items, next one 2^k-2 and so on. Sum of sequence (geometric progression)
2^k + 2^k-1 + 2^k-2 + ... + 1 = 2^(k+1) = 2*n
so complexity for this dependence is linear too.
Now get dependence with smaller (zero) second coefficient:
T(n) = T(n/2) + O(1)
and ensure in linear complexity too.
Seems clear that complexity of recurrence in question lies between complexities for these simpler examples, and is linear.
In general case recurrences with complex branching might be solved with Aktra-Bazzi method (more general approach than Master theorem)
I assume that dependence is
T(n) = T(n/2) + T(n/3) + O(1)
In this case g=1, to find p we should numerically solve
(1/2)^p + (1/3)^p = 1
and get p~0.79, then integrate
T(x) = Theta(x^0.79 * (1 + Int[1..x]((1/u^0.79)*du))) =
Theta(x^0.79 * (1 + 4.8*x^0.21 - 4.8) =
Theta(x^0.79 + 4.8*x) =
Theta(x)
So complexity is linear
I have the following "divide and conquer" algorithm A1.
A1 divides a problem with size n , to 4 sub-problems with size n/4.
Then, solves them and compose the solutions to 12n time.
How can I to write the recursive equation that give the runtime of algorithms.
Answering the question "How can I to write the recursive equation that give the runtime of algorithms"
You should write it this way:
Let T(n) denote the run time of your algorithm for input size of n
T(n) = 4*T(n/4) + 12*n;
Although the master theorem does give a shortcut to the answer, it is imperative to understand the derivation of the Big O runtime. Divide and conquer recurrence relations are written in the form T(n) = q * T(n/j) + cn, where q is the number of subproblems, j the amount we divide the data for each subproblem, and cn is the time it takes to divide/combine/manipulate each subproblem at each level. cn could also be cn^2 or c, whatever the runtime would be.
In your case, you have 4 subproblems of size n/4 with each level being solved in 12n time giving a recurrence relation of T(n) = 4 * T(n/4) + 12n. From this recurrence, we can then derive the runtime of the algorithm. Given it is a divide and conquer relation, we can assume that the base case is T(1) = 1.
To solve the recurrence, I will use a technique called substitution. We know that T(n) = 4 * T(n/4) + 12n, so we will substitute for T(n/4). T(n/4) = 4 * T(n/16) + 12(n/4). Plugging this into the equation gets us T(n) = 4 * (4 * T(n/16) + 12n/4) + 12n, which we can simplify to T(n) = 4^2 * T(n/16) + 2* 12n. Again, we still have more work to do in the equation to capture the work in all levels, so we substitute for T(n/16), T(n) = 4^3 * T(n/64) + 3* 12n. We see the pattern emerge and know that we want to go all the way down to our base case, T(1), so that we substitute to get T(n) = 4^k*T(1) + k * 12n. This equation defines the total amount of work that is in the divide and conquer algorithm because we have substituted all of the levels in, however, we still have an unknown variable k and we want it in terms of n We get k by solving the equation n/4^k = 1 as we know that we have reached the point where we are calling the algorithm on only one variable. We solve for n and get that k = log4n. That means that we have done log4n substitutions. We plug that in for k and get T(n) =4^log4n*T(1) + log4n * 12n. We simplify this to T(n) =n *1 + log4n * 12n. Since this is Big O analysis and log4n is in O(log2n) due to the change of base property of logarithms, we get that T(n) = n + 12n * logn which means that T(n) is in the Big O of nlogn.
Recurrence relation that best describes is given by:
T(n)=4*T(n/4)+12*n
Where T(n)= run time of given algorithm for input of size n, 4= no of subproblems,n/4 = size of each subproblem .
Using Master Theorem Time Complexity is calculated to be:theta(n*log n)
I'm taking Data Structures and Algorithm course and I'm stuck at this recursive equation:
T(n) = logn*T(logn) + n
obviously this can't be handled with the use of the Master Theorem, so I was wondering if anybody has any ideas for solving this recursive equation. I'm pretty sure that it should be solved with a change in the parameters, like considering n to be 2^m , but I couldn't manage to find any good fix.
The answer is Theta(n). To prove something is Theta(n), you have to show it is Omega(n) and O(n). Omega(n) in this case is obvious because T(n)>=n. To show that T(n)=O(n), first
Pick a large finite value N such that log(n)^2 < n/100 for all n>N. This is possible because log(n)^2=o(n).
Pick a constant C>100 such that T(n)<Cn for all n<=N. This is possible due to the fact that N is finite.
We will show inductively that T(n)<Cn for all n>N. Since log(n)<n, by the induction hypothesis, we have:
T(n) < n + log(n) C log(n)
= n + C log(n)^2
< n + (C/100) n
= C * (1/100 + 1/C) * n
< C/50 * n
< C*n
In fact, for this function it is even possible to show that T(n) = n + o(n) using a similar argument.
This is by no means an official proof but I think it goes like this.
The key is the + n part. Because of this, T is bounded below by o(n). (or should that be big omega? I'm rusty.) So let's assume that T(n) = O(n) and have a go at that.
Substitute into the original relation
T(n) = (log n)O(log n) + n
= O(log^2(n)) + O(n)
= O(n)
So it still holds.
I am trying to prove the following worst-case scenario for the Quicksort algorithm but am having some trouble. Initially, we have an array of size n, where n = ij. The idea is that at every partition step of Quicksort, you end up with two sub-arrays where one is of size i and the other is of size i(j-1). i in this case is an integer constant greater than 0. I have drawn out the recursive tree of some examples and understand why this is a worst-case scenario and that the running time will be theta(n^2). To prove this, I've used the iteration method to solve the recurrence equation:
T(n) = T(ij) = m if j = 1
T(n) = T(ij) = T(i) + T(i(j-1)) + cn if j > 1
T(i) = m
T(2i) = m + m + c*2i = 2m + 2ci
T(3i) = m + 2m + 2ci + 3ci = 3m + 5ci
So it looks like the recurrence is:
j
T(n) = jm + ci * sum k - 1
k=1
At this point, I'm a bit lost as to what to do. It looks the summation at the end will result in j^2 if expanded out, but I need to show that it somehow equals n^2. Any explanation on how to continue with this would be appreciated.
Pay attention, the quicksort algorithm worst case scenario is when you have two subproblems of size 0 and n-1. In this scenario, you have this recurrence equations for each level:
T(n) = T(n-1) + T(0) < -- at first level of tree
T(n-1) = T(n-2) + T(0) < -- at second level of tree
T(n-2) = T(n-3) + T(0) < -- at third level of tree
.
.
.
The sum of costs at each level is an arithmetic serie:
n n(n-1)
T(n) = sum k = ------ ~ n^2 (for n -> +inf)
k=1 2
It is O(n^2).
Its a problem of simple mathematics. The complexity as you have calculated correctly is
O(jm + ij^2)
what you have found out is a parameterized complextiy. The standard O(n^2) is contained in this as follows - assuming i=1 you have a standard base case so m=O(1) hence j=n therefore we get O(n^2). if you put ij=n you will get O(nm/i+n^2/i) . Now what you should remember is that m is a function of i depending upon what you will use as the base case algorithm hence m=f(i) thus you are left with O(nf(i)/i + n^2/i). Now again note that since there is no linear algorithm for general sorting hence f(i) = omega(ilogi) which will give you O(nlogi + n^2/i). So you have only one degree of freedom that is i. Check that for any value of i you cannot reduce it below nlogn which is the best bound for comparison based.
Now what I am confused is that you are doing some worst case analysis of quick sort. This is not the way its done. When you say worst case it implies you are using randomization in which case the worst case will always be when i=1 hence the worst case bound will be O(n^2). An elegant way to do this is explained in randomized algorithm book by R. Motwani and Raghavan alternatively if you are a programmer then you look at Cormen.