On a particular STM32 microcontroller, the system clock is driven by a PLL whose frequency F is given by the following formula:
F := (S/M * (N + K/8192)) / P
S is the PLL input source frequency (1 - 64000000, or 64 MHz).
The other factors M, N, K, and P are the parameters the user can modify to calibrate the frequency. Judging by the bitmasks in the SDK I'm using, the value of each can be limited to a maximum of M < 64, N < 512, K < 8192, and P < 128.
Unfortunately, my target firmware does not have FPU support, so floating-point arithmetic is out. Instead, I need to compute F using integer-only arithmetic.
I have tried to rearrange the given formula with 3 goals in mind:
Expand and distribute all multiplication factors
Minimize the number of factors in each denominator
Minimize the total number of divisions performed
If two expressions have the same number of divisions, choose the one whose denominators have the least maximum (identified in earlier paragraph)
However, each of my attempts to expand and rearrange the expression all produce errors greater than the original formula as it was first expressed verbatim.
To test out different arrangements of the formula and compare error, I've written a small Go program you can run online here.
Is it possible to improve this formula so that error is minimized when using integer arithmetic? Also are any of my goals listed above incorrect or useless?
I took your program (your first parentheses is redundant, so I removed):
S K
--- * ( N + ------ )
M 8192
--------------------
P
and ran through QuickMath [1], and I got this:
S * (8192 * N + K)
------------------
8192 * M * P
or in Go code:
S * (8192 * N + K) / (8192 * M * P)
So it does reduce the amount of divisions. You could improve it further by
pulling out the lower constant:
S * (8192 * N + K) / (M * P) >> 13
https://quickmath.com
Looking at the answer by #StevenPerry, I realized the majority of error is introduced by the limited precision we have to represent K/8192. This error then gets propagated into the other factors and dividends.
Postponing that division, however, often results in integer overflow before its ever reached. Thus, the solution I've found unfortunately depends on widening these operands to 64-bit.
The result is of the same form as the other answer, but it must be emphasized that widening the operands to 64-bit is essential. In Go source code, this looks like:
var S, N, M, P, K uint32
...
F := uint32(uint64(S) * uint64(8192*N+K) / uint64(8192*M*P))
To see the accuracy of all three of these expressions, run the code yourself on the Go Playground.
Related
I wrote a haskell function to produce prime factorizations for numbers until a certain threshould – made of some prime factors. A minimal working code can be found here:
http://lpaste.net/117263
The problem: It works very good for "threshould <= 10^9" on my computer. But beginning with "threshould = 10^10" the method don't produce any results on my computer – I never see (even not) the first list element on my screen. The name of the critical function is "exponentSets". For every prime in the list 'factors', it computes the possible exponents (with respect to already chosen exponents for other primes). Further commends are in the code. If 10^10 works good on your machine, try it with an higher exponent (10^11 ...).
My question: what is responsible for that? How can I improve the quality of the function "exponentSets"? (I'm still not very experienced in Haskell so someone more experienced might have an Idea)
Even though you are using 64-bit integers, you still do not have enough capacity to store a temporary integer which is created in intLog:
intLog base num =
let searchExtend lower#(e, n) =
let upper#(e', n') = (2 * e, n^2) -- this line is what causes the problems
-- some code
in (some if) searchExtend (1, base)
rawLists is defined like this:
rawLists = recCall 1 threshould
Which in turn sets remaining_threshould in recCall to
threshould `quot` 1 -- same as threshould
Now intLog gets called by recCall like this:
intLog p remaining_threshould
which is the same as
intLog p threshould
Now comes the interesing part: Since num p is smaller than your base threshold, you call searchExtend (1, base), which then in turn does this:
searchExtend (e, n) =
let (e', n') = (2 * e, n ^ 2)
Since n is remaining_threshould, which is the same as threshould, you essentially square 2^32 + 1 and store this in an Int, which overflows and causes rawLists to give bogus results.
(2 ^ 32 + 1) ^ 2 :: Int is 8589934593
(2 ^ 32 + 1) ^ 2 :: Integer is 18446744082299486209
Suppose I have a real number. I want to approximate it with something of the form a+sqrt(b) for integers a and b. But I don't know the values of a and b. Of course I would prefer to get a good approximation with small values of a and b. Let's leave it undefined for now what is meant by "good" and "small". Any sensible definitions of those terms will do.
Is there a sane way to find them? Something like the continued fraction algorithm for finding fractional approximations of decimals. For more on the fractions problem, see here.
EDIT: To clarify, it is an arbitrary real number. All I have are a bunch of its digits. So depending on how good of an approximation we want, a and b might or might not exist. Brute force is naturally not a particularly good algorithm. The best I can think of would be to start adding integers to my real, squaring the result, and seeing if I come close to an integer. Pretty much brute force, and not a particularly good algorithm. But if nothing better exists, that would itself be interesting to know.
EDIT: Obviously b has to be zero or positive. But a could be any integer.
No need for continued fractions; just calculate the square-root of all "small" values of b (up to whatever value you feel is still "small" enough), remove everything before the decimal point, and sort/store them all (along with the b that generated it).
Then when you need to approximate a real number, find the radical whose decimal-portion is closet to the real number's decimal-portion. This gives you b - choosing the correct a is then a simple matter of subtraction.
This is actually more of a math problem than a computer problem, but to answer the question I think you are right that you can use continued fractions. What you do is first represent the target number as a continued fraction. For example, if you want to approximate pi (3.14159265) then the CF is:
3: 7, 15, 1, 288, 1, 2, 1, 3, 1, 7, 4 ...
The next step is create a table of CFs for square roots, then you compare the values in the table to the fractional part of the target value (here: 7, 15, 1, 288, 1, 2, 1, 3, 1, 7, 4...). For example, let's say your table had square roots for 1-99 only. Then you would find the closest match would be sqrt(51) which has a CF of 7: 7,14 repeating. The 7,14 is the closest to pi's 7,15. Thus your answer would be:
sqrt(51)-4
As the closest approximation given a b < 100 which is off by 0.00016. If you allow larger b's then you could get a better approximation.
The advantage of using CFs is that it is faster than working in, say, doubles or using floating point. For example, in the above case you only have to compare two integers (7 and 15), and you can also use indexing to make finding the closest entry in the table very fast.
This can be done using mixed integer quadratic programming very efficiently (though there are no run-time guarantees as MIQP is NP-complete.)
Define:
d := the real number you wish to approximate
b, a := two integers such that a + sqrt(b) is as "close" to d as possible
r := (d - a)^2 - b, is the residual of the approximation
The goal is to minimize r. Setup your quadratic program as:
x := [ s b t ]
D := | 1 0 0 |
| 0 0 0 |
| 0 0 0 |
c := [0 -1 0]^T
with the constraint that s - t = f (where f is the fractional part of d)
and b,t are integers (s is not)
This is a convex (therefore optimally solvable) mixed integer quadratic program since D is positive semi-definite.
Once s,b,t are computed, simply derive the answer using b=b, s=d-a and t can be ignored.
Your problem may be NP-complete, it would be interesting to prove if so.
Some of the previous answers use methods that are of time or space complexity O(n), where n is the largest “small number” that will be accepted. By contrast, the following method is O(sqrt(n)) in time, and O(1) in space.
Suppose that positive real number r = x + y, where x=floor(r) and 0 ≤ y < 1. We want to approximate r by a number of the form a + √b. If x+y ≈ a+√b then x+y-a ≈ √b, so √b ≈ h+y for some integer offset h, and b ≈ (h+y)^2. To make b an integer, we want to minimize the fractional part of (h+y)^2 over all eligible h. There are at most √n eligible values of h. See following python code and sample output.
import math, random
def findb(y, rhi):
bestb = loerror = 1;
for r in range(2,rhi):
v = (r+y)**2
u = round(v)
err = abs(v-u)
if round(math.sqrt(u))**2 == u: continue
if err < loerror:
bestb, loerror = u, err
return bestb
#random.seed(123456) # set a seed if testing repetitively
f = [math.pi-3] + sorted([random.random() for i in range(24)])
print (' frac sqrt(b) error b')
for frac in f:
b = findb(frac, 12)
r = math.sqrt(b)
t = math.modf(r)[0] # Get fractional part of sqrt(b)
print ('{:9.5f} {:9.5f} {:11.7f} {:5.0f}'.format(frac, r, t-frac, b))
(Note 1: This code is in demo form; the parameters to findb() are y, the fractional part of r, and rhi, the square root of the largest small number. You may wish to change usage of parameters. Note 2: The
if round(math.sqrt(u))**2 == u: continue
line of code prevents findb() from returning perfect-square values of b, except for the value b=1, because no perfect square can improve upon the accuracy offered by b=1.)
Sample output follows. About a dozen lines have been elided in the middle. The first output line shows that this procedure yields b=51 to represent the fractional part of pi, which is the same value reported in some other answers.
frac sqrt(b) error b
0.14159 7.14143 -0.0001642 51
0.11975 4.12311 0.0033593 17
0.12230 4.12311 0.0008085 17
0.22150 9.21954 -0.0019586 85
0.22681 11.22497 -0.0018377 126
0.25946 2.23607 -0.0233893 5
0.30024 5.29150 -0.0087362 28
0.36772 8.36660 -0.0011170 70
0.42452 8.42615 0.0016309 71
...
0.93086 6.92820 -0.0026609 48
0.94677 8.94427 -0.0024960 80
0.96549 11.95826 -0.0072333 143
0.97693 11.95826 -0.0186723 143
With the following code added at the end of the program, the output shown below also appears. This shows closer approximations for the fractional part of pi.
frac, rhi = math.pi-3, 16
print (' frac sqrt(b) error b bMax')
while rhi < 1000:
b = findb(frac, rhi)
r = math.sqrt(b)
t = math.modf(r)[0] # Get fractional part of sqrt(b)
print ('{:11.7f} {:11.7f} {:13.9f} {:7.0f} {:7.0f}'.format(frac, r, t-frac, b,rhi**2))
rhi = 3*rhi/2
frac sqrt(b) error b bMax
0.1415927 7.1414284 -0.000164225 51 256
0.1415927 7.1414284 -0.000164225 51 576
0.1415927 7.1414284 -0.000164225 51 1296
0.1415927 7.1414284 -0.000164225 51 2916
0.1415927 7.1414284 -0.000164225 51 6561
0.1415927 120.1415831 -0.000009511 14434 14641
0.1415927 120.1415831 -0.000009511 14434 32761
0.1415927 233.1415879 -0.000004772 54355 73441
0.1415927 346.1415895 -0.000003127 119814 164836
0.1415927 572.1415909 -0.000001786 327346 370881
0.1415927 911.1415916 -0.000001023 830179 833569
I do not know if there is any kind of standard algorithm for this kind of problem, but it does intrigue me, so here is my attempt at developing an algorithm that finds the needed approximation.
Call the real number in question r. Then, first I assume that a can be negative, in that case we can reduce the problem and now only have to find a b such that the decimal part of sqrt(b) is a good approximation of the decimal part of r. Let us now write r as r = x.y with x being the integer and y the decimal part.
Now:
b = r^2
= (x.y)^2
= (x + .y)^2
= x^2 + 2 * x * .y + .y^2
= 2 * x * .y + .y^2 (mod 1)
We now only have to find an x such that 0 = .y^2 + 2 * x * .y (mod 1) (approximately).
Filling that x into the formulas above we get b and can then calculate a as a = r - b. (All of these calculations have to be carefully rounded of course.)
Now, for the time being I am not sure if there is a way to find this x without brute forcing it. But even then, one can simple use a simple loop to find an x good enough.
I am thinking of something like this(semi pseudo code):
max_diff_low = 0.01 // arbitrary accuracy
max_diff_high = 1 - max_diff_low
y = r % 1
v = y^2
addend = 2 * y
x = 0
while (v < max_diff_high && v > max_diff_low)
x++;
v = (v + addend) % 1
c = (x + y) ^ 2
b = round(c)
a = round(r - c)
Now, I think this algorithm is fairly efficient, while even allowing you to specify the wished accuracy of the approximation. One thing that could be done that would turn it into an O(1) algorithm is calculating all the x and putting them into a lookup table. If one only cares about the first three decimal digits of r(for example), the lookup table would only have 1000 values, which is only 4kb of memory(assuming that 32bit integers are used).
Hope this is helpful at all. If anyone finds anything wrong with the algorithm, please let me know in a comment and I will fix it.
EDIT:
Upon reflection I retract my claim of efficiency. There is in fact as far as I can tell no guarantee that the algorithm as outlined above will ever terminate, and even if it does, it might take a long time to find a very large x that solves the equation adequately.
One could maybe keep track of the best x found so far and relax the accuracy bounds over time to make sure the algorithm terminates quickly, at the possible cost of accuracy.
These problems are of course non-existent, if one simply pre-calculates a lookup table.
In my app I need to run a 5 digits number through an algorithm and return a number between the given interval, ie:
The function encode, gets 3 parameters, 5 digits initial number, interval lower limit and interval superior limit, for example:
int res=encode(12879,10,100) returns 83.
The function starts from 12879 and does something with the numbers and returns a number between 10 and 100. This mustn't be random, every time I pass the number 12879 to the encode function must always return the same number.
Any ideas?
Thanks,
Direz
One possible approach:
compute the range of your interval R = (100 - 10) + 1
compute a hash modulo R of the input H = hash(12879) % R
add the lower bound to the modular hash V = 10 + H
Here the thing though - you haven't defined any constraints or requirements on the "algorithm" that produces the result. If all you want is to map a value into a given range (without any knowledge of the distribution of the input, or how input values may cluster, etc), you could just as easily just take the range modulo of the input without hashing (as Foo Bah demonstrates).
If there are certain constraints, requirements, or distributions of the input or output of your encode method, then the approach may need to be quite different. However, you are the only one who knows what additional requirements you have.
You can do something simple like
encode(x,y,z) --> y + (x mod (z-y))
You don't have an upper limit for this function?
Assume it is 99999 because it is 5 digits. For your case, the simplest way is:
int encode (double N,double H,double L)
{
return (int)(((H - L) / (99999 - 10000)) * (N - 10000) + 10);
}
Is there a way in constant working space to do arbitrary size and arbitrary base conversions. That is, to convert a sequence of n numbers in the range [1,m] to a sequence of ceiling(n*log(m)/log(p)) numbers in the range [1,p] using a 1-to-1 mapping that (preferably but not necessarily) preservers lexigraphical order and gives sequential results?
I'm particularly interested in solutions that are viable as a pipe function, e.i. are able to handle larger dataset than can be stored in RAM.
I have found a number of solutions that require "working space" proportional to the size of the input but none yet that can get away with constant "working space".
Does dropping the sequential constraint make any difference? That is: allow lexicographically sequential inputs to result in non lexicographically sequential outputs:
F(1,2,6,4,3,7,8) -> (5,6,3,2,1,3,5,2,4,3)
F(1,2,6,4,3,7,9) -> (5,6,3,2,1,3,5,2,4,5)
some thoughts:
might this work?
streamBasen -> convert(n, lcm(n,p)) -> convert(lcm(n,p), p) -> streamBasep
(where lcm is least common multiple)
I don't think it's possible in the general case. If m is a power of p (or vice-versa), or if they're both powers of a common base, you can do it, since each group of logm(p) is then independent. However, in the general case, suppose you're converting the number a1 a2 a3 ... an. The equivalent number in base p is
sum(ai * mi-1 for i in 1..n)
If we've processed the first i digits, then we have the ith partial sum. To compute the i+1'th partial sum, we need to add ai+1 * mi. In the general case, this number is going have non-zero digits in most places, so we'll need to modify all of the digits we've processed so far. In other words, we'll have to process all of the input digits before we'll know what the final output digits will be.
In the special case where m are both powers of a common base, or equivalently if logm(p) is a rational number, then mi will only have a few non-zero digits in base p near the front, so we can safely output most of the digits we've computed so far.
I think there is a way of doing radix conversion in a stream-oriented fashion in lexicographic order. However, what I've come up with isn't sufficient for actually doing it, and it has a couple of assumptions:
The length of the positional numbers are already known.
The numbers described are integers. I've not considered what happens with the maths and -ive indices.
We have a sequence of values a of length p, where each value is in the range [0,m-1]. We want a sequence of values b of length q in the range [0,n-1]. We can work out the kth digit of our output sequence b from a as follows:
bk = floor[ sum(ai * mi for i in 0 to p-1) / nk ] mod n
Lets rearrange that sum into two parts, splitting it at an arbitrary point z
bk = floor[ ( sum(ai * mi for i in z to p-1) + sum(ai * mi for i in 0 to z-1) ) / nk ] mod n
Suppose that we don't yet know the values of a between [0,z-1] and can't compute the second sum term. We're left with having to deal with ranges. But that still gives us information about bk.
The minimum value bk can be is:
bk >= floor[ sum(ai * mi for i in z to p-1) / nk ] mod n
and the maximum value bk can be is:
bk <= floor[ ( sum(ai * mi for i in z to p-1) + mz - 1 ) / nk ] mod n
We should be able to do a process like this:
Initialise z to be p. We will count down from p as we receive each character of a.
Initialise k to the index of the most significant value in b. If my brain is still working, ceil[ logn(mp) ].
Read a value of a. Decrement z.
Compute the min and max value for bk.
If the min and max are the same, output bk, and decrement k. Goto 4. (It may be possible that we already have enough values for several consecutive values of bk)
If z!=0 then we expect more values of a. Goto 3.
Hopefully, at this point we're done.
I've not considered how to efficiently compute the range values as yet, but I'm reasonably confident that computing the sum from the incoming characters of a can be done much more reasonably than storing all of a. Without doing the maths though, I won't make any hard claims about it though!
Yes, it is possible
For every I character(s) you read in, you will write out O character(s)
based on Ceiling(Length * log(In) / log(Out)).
Allocate enough space
Set x to 1
Loop over digits from end to beginning # Horner's method
Set a to x * digit
Set t to O - 1
Loop while a > 0 and t >= 0
Set a to a + out digit
Set out digit at position t to a mod to base
Set a to a / to base
Set x to x * from base
Return converted digit(s)
Thus, for base 16 to 2 (which is easy), using "192FE" we read '1' and convert it, then repeat on '9', then '2' and so on giving us '0001', '1001', '0010', '1111', and '1110'.
Note that for bases that are not common powers, such as base 17 to base 2 would mean reading 1 characters and writing 5.
Suppose you have a list of floating point numbers that are approximately multiples of a common quantity, for example
2.468, 3.700, 6.1699
which are approximately all multiples of 1.234. How would you characterize this "approximate gcd", and how would you proceed to compute or estimate it?
Strictly related to my answer to this question.
You can run Euclid's gcd algorithm with anything smaller then 0.01 (or a small number of your choice) being a pseudo 0. With your numbers:
3.700 = 1 * 2.468 + 1.232,
2.468 = 2 * 1.232 + 0.004.
So the pseudo gcd of the first two numbers is 1.232. Now you take the gcd of this with your last number:
6.1699 = 5 * 1.232 + 0.0099.
So 1.232 is the pseudo gcd, and the mutiples are 2,3,5. To improve this result, you may take the linear regression on the data points:
(2,2.468), (3,3.7), (5,6.1699).
The slope is the improved pseudo gcd.
Caveat: the first part of this is algorithm is numerically unstable - if you start with very dirty data, you are in trouble.
Express your measurements as multiples of the lowest one. Thus your list becomes 1.00000, 1.49919, 2.49996. The fractional parts of these values will be very close to 1/Nths, for some value of N dictated by how close your lowest value is to the fundamental frequency. I would suggest looping through increasing N until you find a sufficiently refined match. In this case, for N=1 (that is, assuming X=2.468 is your fundamental frequency) you would find a standard deviation of 0.3333 (two of the three values are .5 off of X * 1), which is unacceptably high. For N=2 (that is, assuming 2.468/2 is your fundamental frequency) you would find a standard deviation of virtually zero (all three values are within .001 of a multiple of X/2), thus 2.468/2 is your approximate GCD.
The major flaw in my plan is that it works best when the lowest measurement is the most accurate, which is likely not the case. This could be mitigated by performing the entire operation multiple times, discarding the lowest value on the list of measurements each time, then use the list of results of each pass to determine a more precise result. Another way to refine the results would be adjust the GCD to minimize the standard deviation between integer multiples of the GCD and the measured values.
This reminds me of the problem of finding good rational-number approximations of real numbers. The standard technique is a continued-fraction expansion:
def rationalizations(x):
assert 0 <= x
ix = int(x)
yield ix, 1
if x == ix: return
for numer, denom in rationalizations(1.0/(x-ix)):
yield denom + ix * numer, numer
We could apply this directly to Jonathan Leffler's and Sparr's approach:
>>> a, b, c = 2.468, 3.700, 6.1699
>>> b/a, c/a
(1.4991896272285252, 2.4999594813614263)
>>> list(itertools.islice(rationalizations(b/a), 3))
[(1, 1), (3, 2), (925, 617)]
>>> list(itertools.islice(rationalizations(c/a), 3))
[(2, 1), (5, 2), (30847, 12339)]
picking off the first good-enough approximation from each sequence. (3/2 and 5/2 here.) Or instead of directly comparing 3.0/2.0 to 1.499189..., you could notice than 925/617 uses much larger integers than 3/2, making 3/2 an excellent place to stop.
It shouldn't much matter which of the numbers you divide by. (Using a/b and c/b you get 2/3 and 5/3, for instance.) Once you have integer ratios, you could refine the implied estimate of the fundamental using shsmurfy's linear regression. Everybody wins!
I'm assuming all of your numbers are multiples of integer values. For the rest of my explanation, A will denote the "root" frequency you are trying to find and B will be an array of the numbers you have to start with.
What you are trying to do is superficially similar to linear regression. You are trying to find a linear model y=mx+b that minimizes the average distance between a linear model and a set of data. In your case, b=0, m is the root frequency, and y represents the given values. The biggest problem is that the independent variables X are not explicitly given. The only thing we know about X is that all of its members must be integers.
Your first task is trying to determine these independent variables. The best method I can think of at the moment assumes that the given frequencies have nearly consecutive indexes (x_1=x_0+n). So B_0/B_1=(x_0)/(x_0+n) given a (hopefully) small integer n. You can then take advantage of the fact that x_0 = n/(B_1-B_0), start with n=1, and keep ratcheting it up until k-rnd(k) is within a certain threshold. After you have x_0 (the initial index), you can approximate the root frequency (A = B_0/x_0). Then you can approximate the other indexes by finding x_n = rnd(B_n/A). This method is not very robust and will probably fail if the error in the data is large.
If you want a better approximation of the root frequency A, you can use linear regression to minimize the error of the linear model now that you have the corresponding dependent variables. The easiest method to do so uses least squares fitting. Wolfram's Mathworld has a in-depth mathematical treatment of the issue, but a fairly simple explanation can be found with some googling.
Interesting question...not easy.
I suppose I would look at the ratios of the sample values:
3.700 / 2.468 = 1.499...
6.1699 / 2.468 = 2.4999...
6.1699 / 3.700 = 1.6675...
And I'd then be looking for a simple ratio of integers in those results.
1.499 ~= 3/2
2.4999 ~= 5/2
1.6675 ~= 5/3
I haven't chased it through, but somewhere along the line, you decide that an error of 1:1000 or something is good enough, and you back-track to find the base approximate GCD.
The solution which I've seen and used myself is to choose some constant, say 1000, multiply all numbers by this constant, round them to integers, find the GCD of these integers using the standard algorithm and then divide the result by the said constant (1000). The larger the constant, the higher the precision.
This is a reformulaiton of shsmurfy's solution when you a priori choose 3 positive tolerances (e1,e2,e3)
The problem is then to search smallest positive integers (n1,n2,n3) and thus largest root frequency f such that:
f1 = n1*f +/- e1
f2 = n2*f +/- e2
f3 = n3*f +/- e3
We assume 0 <= f1 <= f2 <= f3
If we fix n1, then we get these relations:
f is in interval I1=[(f1-e1)/n1 , (f1+e1)/n1]
n2 is in interval I2=[n1*(f2-e2)/(f1+e1) , n1*(f2+e2)/(f1-e1)]
n3 is in interval I3=[n1*(f3-e3)/(f1+e1) , n1*(f3+e3)/(f1-e1)]
We start with n1 = 1, then increment n1 until the interval I2 and I3 contain an integer - that is floor(I2min) different from floor(I2max) same with I3
We then choose smallest integer n2 in interval I2, and smallest integer n3 in interval I3.
Assuming normal distribution of floating point errors, the most probable estimate of root frequency f is the one minimizing
J = (f1/n1 - f)^2 + (f2/n2 - f)^2 + (f3/n3 - f)^2
That is
f = (f1/n1 + f2/n2 + f3/n3)/3
If there are several integers n2,n3 in intervals I2,I3 we could also choose the pair that minimize the residue
min(J)*3/2=(f1/n1)^2+(f2/n2)^2+(f3/n3)^2-(f1/n1)*(f2/n2)-(f1/n1)*(f3/n3)-(f2/n2)*(f3/n3)
Another variant could be to continue iteration and try to minimize another criterium like min(J(n1))*n1, until f falls below a certain frequency (n1 reaches an upper limit)...
I found this question looking for answers for mine in MathStackExchange (here and here).
I've only managed (yet) to measure the appeal of a fundamental frequency given a list of harmonic frequencies (following the sound/music nomenclature), which can be useful if you have a reduced number of options and is feasible to compute the appeal of each one and then choose the best fit.
C&P from my question in MSE (there the formatting is prettier):
being v the list {v_1, v_2, ..., v_n}, ordered from lower to higher
mean_sin(v, x) = sum(sin(2*pi*v_i/x), for i in {1, ...,n})/n
mean_cos(v, x) = sum(cos(2*pi*v_i/x), for i in {1, ...,n})/n
gcd_appeal(v, x) = 1 - sqrt(mean_sin(v, x)^2 + (mean_cos(v, x) - 1)^2)/2, which yields a number in the interval [0,1].
The goal is to find the x that maximizes the appeal. Here is the (gcd_appeal) graph for your example [2.468, 3.700, 6.1699], where you find that the optimum GCD is at x = 1.2337899957639993
Edit:
You may find handy this JAVA code to calculate the (fuzzy) divisibility (aka gcd_appeal) of a divisor relative to a list of dividends; you can use it to test which of your candidates makes the best divisor. The code looks ugly because I tried to optimize it for performance.
//returns the mean divisibility of dividend/divisor as a value in the range [0 and 1]
// 0 means no divisibility at all
// 1 means full divisibility
public double divisibility(double divisor, double... dividends) {
double n = dividends.length;
double factor = 2.0 / divisor;
double sum_x = -n;
double sum_y = 0.0;
double[] coord = new double[2];
for (double v : dividends) {
coordinates(v * factor, coord);
sum_x += coord[0];
sum_y += coord[1];
}
double err = 1.0 - Math.sqrt(sum_x * sum_x + sum_y * sum_y) / (2.0 * n);
//Might happen due to approximation error
return err >= 0.0 ? err : 0.0;
}
private void coordinates(double x, double[] out) {
//Bhaskara performant approximation to
//out[0] = Math.cos(Math.PI*x);
//out[1] = Math.sin(Math.PI*x);
long cos_int_part = (long) (x + 0.5);
long sin_int_part = (long) x;
double rem = x - cos_int_part;
if (cos_int_part != sin_int_part) {
double common_s = 4.0 * rem;
double cos_rem_s = common_s * rem - 1.0;
double sin_rem_s = cos_rem_s + common_s + 1.0;
out[0] = (((cos_int_part & 1L) * 8L - 4L) * cos_rem_s) / (cos_rem_s + 5.0);
out[1] = (((sin_int_part & 1L) * 8L - 4L) * sin_rem_s) / (sin_rem_s + 5.0);
} else {
double common_s = 4.0 * rem - 4.0;
double sin_rem_s = common_s * rem;
double cos_rem_s = sin_rem_s + common_s + 3.0;
double common_2 = ((cos_int_part & 1L) * 8L - 4L);
out[0] = (common_2 * cos_rem_s) / (cos_rem_s + 5.0);
out[1] = (common_2 * sin_rem_s) / (sin_rem_s + 5.0);
}
}