Related
I am running bash in Ipython notebook. I have a variable called run_state that presently is RUNNING. However when I try to compare its value to this string, it doesn't match. What am I doing wrong? The image shows the output of the first echo and that indeed run_state equals RUNNING
run_state="RUNNING"
gcloud ai-platform jobs describe $1 >describe
grep -m 1 -o 'state: [a-zA-Z]*' describe | sed s/'state: '// >state
state_var=$(<state)
echo $state_var
if [ ["$state_var" == "$run_state"] ];
then
echo $state_var
fi
You can't have spaces between the brackets in [[, and you must have spaces around the brackets. So it should be
if [[ "$state_var" == "$run_state" ]];
I've got a few Unix shell scripts where I need to check that certain environment variables are set before I start doing stuff, so I do this sort of thing:
if [ -z "$STATE" ]; then
echo "Need to set STATE"
exit 1
fi
if [ -z "$DEST" ]; then
echo "Need to set DEST"
exit 1
fi
which is a lot of typing. Is there a more elegant idiom for checking that a set of environment variables is set?
EDIT: I should mention that these variables have no meaningful default value - the script should error out if any are unset.
Parameter Expansion
The obvious answer is to use one of the special forms of parameter expansion:
: ${STATE?"Need to set STATE"}
: ${DEST:?"Need to set DEST non-empty"}
Or, better (see section on 'Position of double quotes' below):
: "${STATE?Need to set STATE}"
: "${DEST:?Need to set DEST non-empty}"
The first variant (using just ?) requires STATE to be set, but STATE="" (an empty string) is OK — not exactly what you want, but the alternative and older notation.
The second variant (using :?) requires DEST to be set and non-empty.
If you supply no message, the shell provides a default message.
The ${var?} construct is portable back to Version 7 UNIX and the Bourne Shell (1978 or thereabouts). The ${var:?} construct is slightly more recent: I think it was in System III UNIX circa 1981, but it may have been in PWB UNIX before that. It is therefore in the Korn Shell, and in the POSIX shells, including specifically Bash.
It is usually documented in the shell's man page in a section called Parameter Expansion. For example, the bash manual says:
${parameter:?word}
Display Error if Null or Unset. If parameter is null or unset, the expansion of word (or a message to that effect if word is not present) is written to the standard error and the shell, if it is not interactive, exits. Otherwise, the value of parameter is substituted.
The Colon Command
I should probably add that the colon command simply has its arguments evaluated and then succeeds. It is the original shell comment notation (before '#' to end of line). For a long time, Bourne shell scripts had a colon as the first character. The C Shell would read a script and use the first character to determine whether it was for the C Shell (a '#' hash) or the Bourne shell (a ':' colon). Then the kernel got in on the act and added support for '#!/path/to/program' and the Bourne shell got '#' comments, and the colon convention went by the wayside. But if you come across a script that starts with a colon, now you will know why.
Position of double quotes
blong asked in a comment:
Any thoughts on this discussion? https://github.com/koalaman/shellcheck/issues/380#issuecomment-145872749
The gist of the discussion is:
… However, when I shellcheck it (with version 0.4.1), I get this message:
In script.sh line 13:
: ${FOO:?"The environment variable 'FOO' must be set and non-empty"}
^-- SC2086: Double quote to prevent globbing and word splitting.
Any advice on what I should do in this case?
The short answer is "do as shellcheck suggests":
: "${STATE?Need to set STATE}"
: "${DEST:?Need to set DEST non-empty}"
To illustrate why, study the following. Note that the : command doesn't echo its arguments (but the shell does evaluate the arguments). We want to see the arguments, so the code below uses printf "%s\n" in place of :.
$ mkdir junk
$ cd junk
$ > abc
$ > def
$ > ghi
$
$ x="*"
$ printf "%s\n" ${x:?You must set x} # Careless; not recommended
abc
def
ghi
$ unset x
$ printf "%s\n" ${x:?You must set x} # Careless; not recommended
bash: x: You must set x
$ printf "%s\n" "${x:?You must set x}" # Careful: should be used
bash: x: You must set x
$ x="*"
$ printf "%s\n" "${x:?You must set x}" # Careful: should be used
*
$ printf "%s\n" ${x:?"You must set x"} # Not quite careful enough
abc
def
ghi
$ x=
$ printf "%s\n" ${x:?"You must set x"} # Not quite careful enough
bash: x: You must set x
$ unset x
$ printf "%s\n" ${x:?"You must set x"} # Not quite careful enough
bash: x: You must set x
$
Note how the value in $x is expanded to first * and then a list of file names when the overall expression is not in double quotes. This is what shellcheck is recommending should be fixed. I have not verified that it doesn't object to the form where the expression is enclosed in double quotes, but it is a reasonable assumption that it would be OK.
Try this:
[ -z "$STATE" ] && echo "Need to set STATE" && exit 1;
Your question is dependent on the shell that you are using.
Bourne shell leaves very little in the way of what you're after.
BUT...
It does work, just about everywhere.
Just try and stay away from csh. It was good for the bells and whistles it added, compared the Bourne shell, but it is really creaking now. If you don't believe me, just try and separate out STDERR in csh! (-:
There are two possibilities here. The example above, namely using:
${MyVariable:=SomeDefault}
for the first time you need to refer to $MyVariable. This takes the env. var MyVariable and, if it is currently not set, assigns the value of SomeDefault to the variable for later use.
You also have the possibility of:
${MyVariable:-SomeDefault}
which just substitutes SomeDefault for the variable where you are using this construct. It doesn't assign the value SomeDefault to the variable, and the value of MyVariable will still be null after this statement is encountered.
Surely the simplest approach is to add the -u switch to the shebang (the line at the top of your script), assuming you’re using bash:
#!/bin/sh -u
This will cause the script to exit if any unbound variables lurk within.
${MyVariable:=SomeDefault}
If MyVariable is set and not null, it will reset the variable value (= nothing happens).
Else, MyVariable is set to SomeDefault.
The above will attempt to execute ${MyVariable}, so if you just want to set the variable do:
MyVariable=${MyVariable:=SomeDefault}
In my opinion the simplest and most compatible check for #!/bin/sh is:
if [ "$MYVAR" = "" ]
then
echo "Does not exist"
else
echo "Exists"
fi
Again, this is for /bin/sh and is compatible also on old Solaris systems.
bash 4.2 introduced the -v operator which tests if a name is set to any value, even the empty string.
$ unset a
$ b=
$ c=
$ [[ -v a ]] && echo "a is set"
$ [[ -v b ]] && echo "b is set"
b is set
$ [[ -v c ]] && echo "c is set"
c is set
I always used:
if [ "x$STATE" == "x" ]; then echo "Need to set State"; exit 1; fi
Not that much more concise, I'm afraid.
Under CSH you have $?STATE.
For future people like me, I wanted to go a step forward and parameterize the var name, so I can loop over a variable sized list of variable names:
#!/bin/bash
declare -a vars=(NAME GITLAB_URL GITLAB_TOKEN)
for var_name in "${vars[#]}"
do
if [ -z "$(eval "echo \$$var_name")" ]; then
echo "Missing environment variable $var_name"
exit 1
fi
done
We can write a nice assertion to check a bunch of variables all at once:
#
# assert if variables are set (to a non-empty string)
# if any variable is not set, exit 1 (when -f option is set) or return 1 otherwise
#
# Usage: assert_var_not_null [-f] variable ...
#
function assert_var_not_null() {
local fatal var num_null=0
[[ "$1" = "-f" ]] && { shift; fatal=1; }
for var in "$#"; do
[[ -z "${!var}" ]] &&
printf '%s\n' "Variable '$var' not set" >&2 &&
((num_null++))
done
if ((num_null > 0)); then
[[ "$fatal" ]] && exit 1
return 1
fi
return 0
}
Sample invocation:
one=1 two=2
assert_var_not_null one two
echo test 1: return_code=$?
assert_var_not_null one two three
echo test 2: return_code=$?
assert_var_not_null -f one two three
echo test 3: return_code=$? # this code shouldn't execute
Output:
test 1: return_code=0
Variable 'three' not set
test 2: return_code=1
Variable 'three' not set
More such assertions here: https://github.com/codeforester/base/blob/master/lib/assertions.sh
This can be a way too:
if (set -u; : $HOME) 2> /dev/null
...
...
http://unstableme.blogspot.com/2007/02/checks-whether-envvar-is-set-or-not.html
None of the above solutions worked for my purposes, in part because I checking the environment for an open-ended list of variables that need to be set before starting a lengthy process. I ended up with this:
mapfile -t arr < variables.txt
EXITCODE=0
for i in "${arr[#]}"
do
ISSET=$(env | grep ^${i}= | wc -l)
if [ "${ISSET}" = "0" ];
then
EXITCODE=-1
echo "ENV variable $i is required."
fi
done
exit ${EXITCODE}
Rather than using external shell scripts I tend to load in functions in my login shell. I use something like this as a helper function to check for environment variables rather than any set variable:
is_this_an_env_variable ()
local var="$1"
if env |grep -q "^$var"; then
return 0
else
return 1
fi
}
The $? syntax is pretty neat:
if [ $?BLAH == 1 ]; then
echo "Exists";
else
echo "Does not exist";
fi
I have this (test) script:
#!/bin/bash
my_cmd_bad_ ( ) {
cmd="$#"
$cmd
}
my_cmd_good_ ( ) {
"$#"
}
my_cmd_bad_ ls -l "file with space"
my_cmd_good_ ls -l "file with space"
The output is (the file does not exist, which is not the point of this question):
» ~/test.sh
ls: cannot access file: No such file or directory
ls: cannot access with: No such file or directory
ls: cannot access space: No such file or directory
ls: cannot access file with space: No such file or directory
I am surprised that the first version does not work as expected: the parameter is not quoted, and instead of processing one file, it processes three. Why?
How can I save the command that I want to execute, properly quoted? I need to execute it later, where I do not have "$#" anymore.
A simple rework of this test script would be appreciated.
See similar question: How to pass command line parameters with quotes stored in single variable?
Use those utility functions ho save a command to a string for later execution:
bash_escape() {
# backtick indirection strictly necessary here: we use it to strip the
# trailing newline from sed's output, which Solaris/BSD sed *always* output
# (unlike GNU sed, which outputs "test": printf %s test | sed -e s/dummy//)
out=`echo "$1" | sed -e s/\\'/\\''\\\\'\\'\\'/g`
printf \'%s\' "$out"
}
append_bash_escape() {
printf "%s " "$1"
bash_escape "$2"
}
your_cmd_fixed_ ( ) {
cmd="$#"
while [ $# -gt 0 ] ; do
cmd=`append_bash_escape "$cmd" "$1"` ; shift
done
$cmd
}
You can quote any single parameter and evaluate it later:
my_cmd_bad_ ( ) {
j=0
for i in "$#"; do
cmd["$j"]=\"$"$i"\"
j=$(( $j + 1 ))
done;
eval ${cmd[*]}
}
You are combining three space-delimited strings "ls", "-l", and "file with space" into a single space-delimited string cmd. There's no way to know which spaces were originally quoted (in "file with space") and which spaces were introduced during the assignment to cmd.
Typically, it is not a good idea to try to build up command lines into a single string. Use functions, or isolate the actual command and leave the arguments in $#.
Rewrite the command like this:
my_cmd_bad_ () {
cmd=$1; shift
$cmd "$#"
}
See http://mywiki.wooledge.org/BashFAQ/050
Note that your second version is greatly preferred most of the time. The only exceptions are if you need to do something special. For example, you can't bundle an assignment or redirect or compound command into a parameter list.
The correct way to handle the quoting issue requires non-standard features. Semi-realistic example involving a template:
function myWrapper {
typeset x IFS=$' \t\n'
{ eval "$(</dev/fd/0)"; } <<-EOF
for x in $(printf '%q ' "$#"); do
echo "\$x"
done
EOF
}
myWrapper 'foo bar' $'baz\nbork'
Make sure you understand exactly what's going on here and that you really have a good reason for doing this. It requires ensuring side-effects can't affect the arguments. This specific example doesn't demonstrate a very good use case because everything is hard-coded so you're able to correctly escape things in advance and expand the arguments quoted if you wanted.
I have a bash script that is being used in a CGI. The CGI sets the $QUERY_STRING environment variable by reading everything after the ? in the URL. For example, http://example.com?a=123&b=456&c=ok sets QUERY_STRING=a=123&b=456&c=ok.
Somewhere I found the following ugliness:
b=$(echo "$QUERY_STRING" | sed -n 's/^.*b=\([^&]*\).*$/\1/p' | sed "s/%20/ /g")
which will set $b to whatever was found in $QUERY_STRING for b. However, my script has grown to have over ten input parameters. Is there an easier way to automatically convert the parameters in $QUERY_STRING into environment variables usable by bash?
Maybe I'll just use a for loop of some sort, but it'd be even better if the script was smart enough to automatically detect each parameter and maybe build an array that looks something like this:
${parm[a]}=123
${parm[b]}=456
${parm[c]}=ok
How could I write code to do that?
Try this:
saveIFS=$IFS
IFS='=&'
parm=($QUERY_STRING)
IFS=$saveIFS
Now you have this:
parm[0]=a
parm[1]=123
parm[2]=b
parm[3]=456
parm[4]=c
parm[5]=ok
In Bash 4, which has associative arrays, you can do this (using the array created above):
declare -A array
for ((i=0; i<${#parm[#]}; i+=2))
do
array[${parm[i]}]=${parm[i+1]}
done
which will give you this:
array[a]=123
array[b]=456
array[c]=ok
Edit:
To use indirection in Bash 2 and later (using the parm array created above):
for ((i=0; i<${#parm[#]}; i+=2))
do
declare var_${parm[i]}=${parm[i+1]}
done
Then you will have:
var_a=123
var_b=456
var_c=ok
You can access these directly:
echo $var_a
or indirectly:
for p in a b c
do
name="var$p"
echo ${!name}
done
If possible, it's better to avoid indirection since it can make code messy and be a source of bugs.
you can break $QUERY down using IFS. For example, setting it to &
$ QUERY="a=123&b=456&c=ok"
$ echo $QUERY
a=123&b=456&c=ok
$ IFS="&"
$ set -- $QUERY
$ echo $1
a=123
$ echo $2
b=456
$ echo $3
c=ok
$ array=($#)
$ for i in "${array[#]}"; do IFS="=" ; set -- $i; echo $1 $2; done
a 123
b 456
c ok
And you can save to a hash/dictionary in Bash 4+
$ declare -A hash
$ for i in "${array[#]}"; do IFS="=" ; set -- $i; hash[$1]=$2; done
$ echo ${hash["b"]}
456
Please don't use the evil eval junk.
Here's how you can reliably parse the string and get an associative array:
declare -A param
while IFS='=' read -r -d '&' key value && [[ -n "$key" ]]; do
param["$key"]=$value
done <<<"${QUERY_STRING}&"
If you don't like the key check, you could do this instead:
declare -A param
while IFS='=' read -r -d '&' key value; do
param["$key"]=$value
done <<<"${QUERY_STRING:+"${QUERY_STRING}&"}"
Listing all the keys and values from the array:
for key in "${!param[#]}"; do
echo "$key: ${param[$key]}"
done
I packaged the sed command up into another script:
$cat getvar.sh
s='s/^.*'${1}'=\([^&]*\).*$/\1/p'
echo $QUERY_STRING | sed -n $s | sed "s/%20/ /g"
and I call it from my main cgi as:
id=`./getvar.sh id`
ds=`./getvar.sh ds`
dt=`./getvar.sh dt`
...etc, etc - you get idea.
works for me even with a very basic busybox appliance (my PVR in this case).
To converts the contents of QUERY_STRING into bash variables use the following command:
eval $(echo ${QUERY_STRING//&/;})
The inner step, echo ${QUERY_STRING//&/;}, substitutes all ampersands with semicolons producing a=123;b=456;c=ok which the eval then evaluates into the current shell.
The result can then be used as bash variables.
echo $a
echo $b
echo $c
The assumptions are:
values will never contain '&'
values will never contain ';'
QUERY_STRING will never contain malicious code
While the accepted answer is probably the most beautiful one, there might be cases where security is super-important, and it needs to be also well-visible from your script.
In such a case, first I wouldn't use bash for the task, but if it should be done on some reason, it might be better to avoid these new array - dictionary features, because you can't be sure, how exactly are they escaped.
In this case, the good old primitive solutions might work:
QS="${QUERY_STRING}"
while [ "${QS}" != "" ]
do
nameval="${QS%%&*}"
QS="${QS#$nameval}"
QS="${QS#&}"
name="${nameval%%=*}"
val="${nameval#$name}"
val="${nameval#=}"
# and here we have $name and $val as names and values
# ...
done
This iterates on the name-value pairs of the QUERY_STRING, and there is no way to circumvent it with any tricky escape sequence - the " is a very strong thing in bash, except a single variable name substitution, which is fully controlled by us, nothing can be tricked.
Furthermore, you can inject your own processing code into "# ...". This enables you to allow only your own, well-defined (and, ideally, short) list of the allowed variable names. Needless to say, LD_PRELOAD shouldn't be one of them. ;-)
Furthermore, no variable will be exported, and exclusively QS, nameval, name and val is used.
Following the correct answer, I've done myself some changes to support array variables like in this other question. I added also a decode function of which I can not find the author to give some credit.
Code appears somewhat messy, but it works. Changes and other recommendations would be greatly appreciated.
function cgi_decodevar() {
[ $# -ne 1 ] && return
local v t h
# replace all + with whitespace and append %%
t="${1//+/ }%%"
while [ ${#t} -gt 0 -a "${t}" != "%" ]; do
v="${v}${t%%\%*}" # digest up to the first %
t="${t#*%}" # remove digested part
# decode if there is anything to decode and if not at end of string
if [ ${#t} -gt 0 -a "${t}" != "%" ]; then
h=${t:0:2} # save first two chars
t="${t:2}" # remove these
v="${v}"`echo -e \\\\x${h}` # convert hex to special char
fi
done
# return decoded string
echo "${v}"
return
}
saveIFS=$IFS
IFS='=&'
VARS=($QUERY_STRING)
IFS=$saveIFS
for ((i=0; i<${#VARS[#]}; i+=2))
do
curr="$(cgi_decodevar ${VARS[i]})"
next="$(cgi_decodevar ${VARS[i+2]})"
prev="$(cgi_decodevar ${VARS[i-2]})"
value="$(cgi_decodevar ${VARS[i+1]})"
array=${curr%"[]"}
if [ "$curr" == "$next" ] && [ "$curr" != "$prev" ] ;then
j=0
declare var_${array}[$j]="$value"
elif [ $i -gt 1 ] && [ "$curr" == "$prev" ]; then
j=$((j + 1))
declare var_${array}[$j]="$value"
else
declare var_$curr="$value"
fi
done
I would simply replace the & to ;. It will become to something like:
a=123;b=456;c=ok
So now you need just evaluate and read your vars:
eval `echo "${QUERY_STRING}"|tr '&' ';'`
echo $a
echo $b
echo $c
A nice way to handle CGI query strings is to use Haserl which acts as a wrapper around your Bash cgi script, and offers convenient and secure query string parsing.
To bring this up to date, if you have a recent Bash version then you can achieve this with regular expressions:
q="$QUERY_STRING"
re1='^(\w+=\w+)&?'
re2='^(\w+)=(\w+)$'
declare -A params
while [[ $q =~ $re1 ]]; do
q=${q##*${BASH_REMATCH[0]}}
[[ ${BASH_REMATCH[1]} =~ $re2 ]] && params+=([${BASH_REMATCH[1]}]=${BASH_REMATCH[2]})
done
If you don't want to use associative arrays then just change the penultimate line to do what you want. For each iteration of the loop the parameter is in ${BASH_REMATCH[1]} and its value is in ${BASH_REMATCH[2]}.
Here is the same thing as a function in a short test script that iterates over the array outputs the query string's parameters and their values
#!/bin/bash
QUERY_STRING='foo=hello&bar=there&baz=freddy'
get_query_string() {
local q="$QUERY_STRING"
local re1='^(\w+=\w+)&?'
local re2='^(\w+)=(\w+)$'
while [[ $q =~ $re1 ]]; do
q=${q##*${BASH_REMATCH[0]}}
[[ ${BASH_REMATCH[1]} =~ $re2 ]] && eval "$1+=([${BASH_REMATCH[1]}]=${BASH_REMATCH[2]})"
done
}
declare -A params
get_query_string params
for k in "${!params[#]}"
do
v="${params[$k]}"
echo "$k : $v"
done
Note the parameters end up in the array in reverse order (it's associative so that shouldn't matter).
why not this
$ echo "${QUERY_STRING}"
name=carlo&last=lanza&city=pfungen-CH
$ saveIFS=$IFS
$ IFS='&'
$ eval $QUERY_STRING
$ IFS=$saveIFS
now you have this
name = carlo
last = lanza
city = pfungen-CH
$ echo "name is ${name}"
name is carlo
$ echo "last is ${last}"
last is lanza
$ echo "city is ${city}"
city is pfungen-CH
#giacecco
To include a hiphen in the regex you could change the two lines as such in answer from #starfry.
Change these two lines:
local re1='^(\w+=\w+)&?'
local re2='^(\w+)=(\w+)$'
To these two lines:
local re1='^(\w+=(\w+|-|)+)&?'
local re2='^(\w+)=((\w+|-|)+)$'
For all those who couldn't get it working with the posted answers (like me),
this guy figured it out.
Can't upvote his post unfortunately...
Let me repost the code here real quick:
#!/bin/sh
if [ "$REQUEST_METHOD" = "POST" ]; then
if [ "$CONTENT_LENGTH" -gt 0 ]; then
read -n $CONTENT_LENGTH POST_DATA <&0
fi
fi
#echo "$POST_DATA" > data.bin
IFS='=&'
set -- $POST_DATA
#2- Value1
#4- Value2
#6- Value3
#8- Value4
echo $2 $4 $6 $8
echo "Content-type: text/html"
echo ""
echo "<html><head><title>Saved</title></head><body>"
echo "Data received: $POST_DATA"
echo "</body></html>"
Hope this is of help for anybody.
Cheers
Actually I liked bolt's answer, so I made a version which works with Busybox as well (ash in Busybox does not support here string).
This code will accept key1 and key2 parameters, all others will be ignored.
while IFS= read -r -d '&' KEYVAL && [[ -n "$KEYVAL" ]]; do
case ${KEYVAL%=*} in
key1) KEY1=${KEYVAL#*=} ;;
key2) KEY2=${KEYVAL#*=} ;;
esac
done <<END
$(echo "${QUERY_STRING}&")
END
One can use the bash-cgi.sh, which processes :
the query string into the $QUERY_STRING_GET key and value array;
the post request data (x-www-form-urlencoded) into the $QUERY_STRING_POST key and value array;
the cookies data into the $HTTP_COOKIES key and value array.
Demands bash version 4.0 or higher (to define the key and value arrays above).
All processing is made by bash only (i.e. in an one process) without any external dependencies and additional processes invoking.
It has:
the check for max length of data, which can be transferred to it's input,
as well as processed as query string and cookies;
the redirect() procedure to produce redirect to itself with the extension changed to .html (it is useful for an one page's sites);
the http_header_tail() procedure to output the last two strings of the HTTP(S) respond's header;
the $REMOTE_ADDR value sanitizer from possible injections;
the parser and evaluator of the escaped UTF-8 symbols embedded into the values passed to the $QUERY_STRING_GET, $QUERY_STRING_POST and $HTTP_COOKIES;
the sanitizer of the $QUERY_STRING_GET, $QUERY_STRING_POST and $HTTP_COOKIES values against possible SQL injections (the escaping like the mysql_real_escape_string php function does, plus the escaping of # and $).
It is available here:
https://github.com/VladimirBelousov/fancy_scripts
This works in dash using for in loop
IFS='&'
for f in $query_string; do
value=${f##*=}
key=${f%%=*}
# if you need environment variable -> eval "qs_$key=$value"
done
I've got a few Unix shell scripts where I need to check that certain environment variables are set before I start doing stuff, so I do this sort of thing:
if [ -z "$STATE" ]; then
echo "Need to set STATE"
exit 1
fi
if [ -z "$DEST" ]; then
echo "Need to set DEST"
exit 1
fi
which is a lot of typing. Is there a more elegant idiom for checking that a set of environment variables is set?
EDIT: I should mention that these variables have no meaningful default value - the script should error out if any are unset.
Parameter Expansion
The obvious answer is to use one of the special forms of parameter expansion:
: ${STATE?"Need to set STATE"}
: ${DEST:?"Need to set DEST non-empty"}
Or, better (see section on 'Position of double quotes' below):
: "${STATE?Need to set STATE}"
: "${DEST:?Need to set DEST non-empty}"
The first variant (using just ?) requires STATE to be set, but STATE="" (an empty string) is OK — not exactly what you want, but the alternative and older notation.
The second variant (using :?) requires DEST to be set and non-empty.
If you supply no message, the shell provides a default message.
The ${var?} construct is portable back to Version 7 UNIX and the Bourne Shell (1978 or thereabouts). The ${var:?} construct is slightly more recent: I think it was in System III UNIX circa 1981, but it may have been in PWB UNIX before that. It is therefore in the Korn Shell, and in the POSIX shells, including specifically Bash.
It is usually documented in the shell's man page in a section called Parameter Expansion. For example, the bash manual says:
${parameter:?word}
Display Error if Null or Unset. If parameter is null or unset, the expansion of word (or a message to that effect if word is not present) is written to the standard error and the shell, if it is not interactive, exits. Otherwise, the value of parameter is substituted.
The Colon Command
I should probably add that the colon command simply has its arguments evaluated and then succeeds. It is the original shell comment notation (before '#' to end of line). For a long time, Bourne shell scripts had a colon as the first character. The C Shell would read a script and use the first character to determine whether it was for the C Shell (a '#' hash) or the Bourne shell (a ':' colon). Then the kernel got in on the act and added support for '#!/path/to/program' and the Bourne shell got '#' comments, and the colon convention went by the wayside. But if you come across a script that starts with a colon, now you will know why.
Position of double quotes
blong asked in a comment:
Any thoughts on this discussion? https://github.com/koalaman/shellcheck/issues/380#issuecomment-145872749
The gist of the discussion is:
… However, when I shellcheck it (with version 0.4.1), I get this message:
In script.sh line 13:
: ${FOO:?"The environment variable 'FOO' must be set and non-empty"}
^-- SC2086: Double quote to prevent globbing and word splitting.
Any advice on what I should do in this case?
The short answer is "do as shellcheck suggests":
: "${STATE?Need to set STATE}"
: "${DEST:?Need to set DEST non-empty}"
To illustrate why, study the following. Note that the : command doesn't echo its arguments (but the shell does evaluate the arguments). We want to see the arguments, so the code below uses printf "%s\n" in place of :.
$ mkdir junk
$ cd junk
$ > abc
$ > def
$ > ghi
$
$ x="*"
$ printf "%s\n" ${x:?You must set x} # Careless; not recommended
abc
def
ghi
$ unset x
$ printf "%s\n" ${x:?You must set x} # Careless; not recommended
bash: x: You must set x
$ printf "%s\n" "${x:?You must set x}" # Careful: should be used
bash: x: You must set x
$ x="*"
$ printf "%s\n" "${x:?You must set x}" # Careful: should be used
*
$ printf "%s\n" ${x:?"You must set x"} # Not quite careful enough
abc
def
ghi
$ x=
$ printf "%s\n" ${x:?"You must set x"} # Not quite careful enough
bash: x: You must set x
$ unset x
$ printf "%s\n" ${x:?"You must set x"} # Not quite careful enough
bash: x: You must set x
$
Note how the value in $x is expanded to first * and then a list of file names when the overall expression is not in double quotes. This is what shellcheck is recommending should be fixed. I have not verified that it doesn't object to the form where the expression is enclosed in double quotes, but it is a reasonable assumption that it would be OK.
Try this:
[ -z "$STATE" ] && echo "Need to set STATE" && exit 1;
Your question is dependent on the shell that you are using.
Bourne shell leaves very little in the way of what you're after.
BUT...
It does work, just about everywhere.
Just try and stay away from csh. It was good for the bells and whistles it added, compared the Bourne shell, but it is really creaking now. If you don't believe me, just try and separate out STDERR in csh! (-:
There are two possibilities here. The example above, namely using:
${MyVariable:=SomeDefault}
for the first time you need to refer to $MyVariable. This takes the env. var MyVariable and, if it is currently not set, assigns the value of SomeDefault to the variable for later use.
You also have the possibility of:
${MyVariable:-SomeDefault}
which just substitutes SomeDefault for the variable where you are using this construct. It doesn't assign the value SomeDefault to the variable, and the value of MyVariable will still be null after this statement is encountered.
Surely the simplest approach is to add the -u switch to the shebang (the line at the top of your script), assuming you’re using bash:
#!/bin/sh -u
This will cause the script to exit if any unbound variables lurk within.
${MyVariable:=SomeDefault}
If MyVariable is set and not null, it will reset the variable value (= nothing happens).
Else, MyVariable is set to SomeDefault.
The above will attempt to execute ${MyVariable}, so if you just want to set the variable do:
MyVariable=${MyVariable:=SomeDefault}
In my opinion the simplest and most compatible check for #!/bin/sh is:
if [ "$MYVAR" = "" ]
then
echo "Does not exist"
else
echo "Exists"
fi
Again, this is for /bin/sh and is compatible also on old Solaris systems.
bash 4.2 introduced the -v operator which tests if a name is set to any value, even the empty string.
$ unset a
$ b=
$ c=
$ [[ -v a ]] && echo "a is set"
$ [[ -v b ]] && echo "b is set"
b is set
$ [[ -v c ]] && echo "c is set"
c is set
I always used:
if [ "x$STATE" == "x" ]; then echo "Need to set State"; exit 1; fi
Not that much more concise, I'm afraid.
Under CSH you have $?STATE.
For future people like me, I wanted to go a step forward and parameterize the var name, so I can loop over a variable sized list of variable names:
#!/bin/bash
declare -a vars=(NAME GITLAB_URL GITLAB_TOKEN)
for var_name in "${vars[#]}"
do
if [ -z "$(eval "echo \$$var_name")" ]; then
echo "Missing environment variable $var_name"
exit 1
fi
done
We can write a nice assertion to check a bunch of variables all at once:
#
# assert if variables are set (to a non-empty string)
# if any variable is not set, exit 1 (when -f option is set) or return 1 otherwise
#
# Usage: assert_var_not_null [-f] variable ...
#
function assert_var_not_null() {
local fatal var num_null=0
[[ "$1" = "-f" ]] && { shift; fatal=1; }
for var in "$#"; do
[[ -z "${!var}" ]] &&
printf '%s\n' "Variable '$var' not set" >&2 &&
((num_null++))
done
if ((num_null > 0)); then
[[ "$fatal" ]] && exit 1
return 1
fi
return 0
}
Sample invocation:
one=1 two=2
assert_var_not_null one two
echo test 1: return_code=$?
assert_var_not_null one two three
echo test 2: return_code=$?
assert_var_not_null -f one two three
echo test 3: return_code=$? # this code shouldn't execute
Output:
test 1: return_code=0
Variable 'three' not set
test 2: return_code=1
Variable 'three' not set
More such assertions here: https://github.com/codeforester/base/blob/master/lib/assertions.sh
This can be a way too:
if (set -u; : $HOME) 2> /dev/null
...
...
http://unstableme.blogspot.com/2007/02/checks-whether-envvar-is-set-or-not.html
None of the above solutions worked for my purposes, in part because I checking the environment for an open-ended list of variables that need to be set before starting a lengthy process. I ended up with this:
mapfile -t arr < variables.txt
EXITCODE=0
for i in "${arr[#]}"
do
ISSET=$(env | grep ^${i}= | wc -l)
if [ "${ISSET}" = "0" ];
then
EXITCODE=-1
echo "ENV variable $i is required."
fi
done
exit ${EXITCODE}
Rather than using external shell scripts I tend to load in functions in my login shell. I use something like this as a helper function to check for environment variables rather than any set variable:
is_this_an_env_variable ()
local var="$1"
if env |grep -q "^$var"; then
return 0
else
return 1
fi
}
The $? syntax is pretty neat:
if [ $?BLAH == 1 ]; then
echo "Exists";
else
echo "Does not exist";
fi