Counting sticks that touch red lines in Julia - random

I want to randomly "scatter" sticks of length 1 like shown in the diagram.
I also want to count the sticks that touched the red lines.
My approach was to create normalized vectors that are oriented randomly in space.
The problem is that they are all at the origin and I am also not sure how to identify and count those who touch the red lines
a = [randn(), randn()];
line = a/norm(a) # Normalized vector in random direction

Here is one of the ways to approach your question using simulation:
julia> using Statistics
julia> function gen_point()
α = rand() * 2π
range_x = 5 # anything as your lines are horizontal
range_y::Int = 5 # must be a positive integer
#assert range_y >= 1
x0 = [rand() * range_x, rand() * range_y]
xd = [cos(α), sin(α)]
return (x0, x0 .+ xd)
end
gen_point (generic function with 1 method)
julia> intersects(point) = floor(point[1][2]) != floor(point[2][2])
intersects (generic function with 1 method)
julia> mean((intersects(gen_point()) for _ in 1:100_000))
0.63731
julia> 2/π # our simulation recovers the theoretical result
0.6366197723675814
Some comments:
In my solution I sample the angle in (0,2pi) range;
I use x_range and y_range to define the rectangle in which the lines are scattered (x_range can be anything, but it is important that y_range is an integer);
I have not optimized the code for speed, but for simplicity; in my gen_point function I generate a 2-element vector holding 2-element vectors indicating (x,y) locations of endpoints of the line; the intersects function - as you can see is quite simple: if y-axis of both endpoints do not have the same integer part this means that the line must intersect horizontal line of the form y=i, where i is an integer (I ignore the case where we would sample points that have exactly integer y axis value, as this is negligible);
note that your plot is incorrect as x and y axes are scaled differently so actually the lines you have drawn do not all have length 1 (this is a side comment - not affecting the solution)

Related

How to create a mask or detect image section based on the intensity value?

I have a matrix named figmat from which I obtain the following pcolor plot (Matlab-Version R 2016b).
Basically I only want to extract the bottom red high intensity line from this plot.
I thought of doing it in some way of extracting the maximum values from the matrix and creating some sort of mask on the main matrix. But I'm not understanding a possible way to achieve this. Can it be accomplished with the help of any edge/image detection algorithms?
I was trying something like this with the following code to create a mask
A=max(figmat);
figmat(figmat~=A)=0;
imagesc(figmat);
But this gives only the boundary of maximum values. I also need the entire red color band.
Okay, I assume that the red line is linear and its values can uniquely be separated from the rest of the picture. Let's generate some test data...
[x,y] = meshgrid(-5:.2:5, -5:.2:5);
n = size(x,1)*size(x,2);
z = -0.2*(y-(0.2*x+1)).^2 + 5 + randn(size(x))*0.1;
figure
surf(x,y,z);
This script generates a surface function. Its set of maximum values (x,y) can be described by a linear function y = 0.2*x+1. I added a bit of noise to it to make it a bit more realistic.
We now select all points where z is smaller than, let's say, 95 % of the maximum value. Therefore find can be used. Later, we want to use one-dimensional data, so we reshape everything.
thresh = min(min(z)) + (max(max(z))-min(min(z)))*0.95;
mask = reshape(z > thresh,1,n);
idx = find(mask>0);
xvec = reshape(x,1,n);
yvec = reshape(y,1,n);
xvec and yvec now contain the coordinates of all values > thresh.
The last step is to do some linear polynomial over all points.
pp = polyfit(xvec(idx),yvec(idx),1)
pp =
0.1946 1.0134
Obviously these are roughly the coefficients of y = 0.2*x+1 as it should be.
I do not know, if this also works with your data, since I made some assumptions. The threshold level must be chosen carefully. Maybe some preprocessing must be done to dynamically detect this level if you really want to process your images automatically. There might also be a simpler way to do it... but for me this one was straight forward without the need of any toolboxes.
By assuming:
There is only one band to extract.
It always has the maximum values.
It is linear.
I can adopt my previous answer to this case as well, with few minor changes:
First, we get the distribution of the values in the matrix and look for a population in the top values, that can be distinguished from the smaller values. This is done by finding the maximum value x(i) on the histogram that:
Is a local maximum (its bin is higher than that of x(i+1) and x(i-1))
Has more values above it than within it (the sum of the height of bins x(i+1) to x(end) < the height of bin x):
This is how it is done:
[h,x] = histcounts(figmat); % get the distribution of intesities
d = diff(fliplr(h)); % The diffrence in bin height from large x to small x
band_min_ind = find(cumsum(d)>size(figmat,2) & d<0, 1); % 1st bin that fit the conditions
flp_val = fliplr(x); % the value of x from large to small
band_min = flp_val(band_min_ind); % the value of x that fit the conditions
Now we continue as before. Mask all the unwanted values, interpolate the linear line:
mA = figmat>band_min; % mask all values below the top value mode
[y1,x1] = find(mA,1); % find the first nonzero row
[y2,x2] = find(mA,1,'last'); % find the last nonzero row
m = (y1-y2)/(x1-x2); % the line slope
n = y1-m*x1; % the intercept
f_line = #(x) m.*x+n; % the line function
And if we plot it we can see the red line where the band for detection was:
Next, we can make this line thicker for a better representation of this line:
thick = max(sum(mA)); % mode thickness of the line
tmp = (1:thick)-ceil(thick/2); % helper vector for expanding
rows = bsxfun(#plus,tmp.',floor(f_line(1:size(A,2)))); % all the rows for each column
rows(rows<1) = 1; % make sure to not get out of range
rows(rows>size(A,1)) = size(A,1); % make sure to not get out of range
inds = sub2ind(size(A),rows,repmat(1:size(A,2),thick,1)); % convert to linear indecies
mA(inds) = true; % add the interpolation to the mask
result = figmat.*mA; % apply the mask on figmat
Finally, we can plot that result after masking, excluding the unwanted areas:
imagesc(result(any(result,2),:))

Plotting two variables function

This question is for learning purpose. I am writing my own function to plot an equation. For example:
function e(x) { return sin(x); }
plot(e);
I wrote a plot function that takes function as parameter. The plotting code is simple, x run from some value to some value and increase by small step. This is plot that the plot() manage to produce.
But there is the problem. It cannot express the circle equation like x2 + y2 = 1. So the question would be how should the plot and equation function look like to be able to handle two variables.
Noted that I am not only interesting in two circle equation. A more generalize way of plotting function with two variables.
Well to plot a non function 1D equation (x,y variables) you have 3 choices:
convert to parametric form
so for example x^2 + y^2 = 1 will become:
x = cos(t);
y = sin(t);
t = <0,2*PI>
So plot each function as 1D function plot while t is used as parameter. But for this you need to exploit mathematic identities and substitute ... That is not easily done programaticaly.
convert to 1D functions
non function means you got more than 1 y values for some x values. If you separate your equation into intervals and divide to all cases covering whole plot then you can plot each derived function instead.
So you derive y algebraicaly (let assume unit circle again):
x^2 + y^2 = 1
y^2 = 1 - x^2
y = +/- sqrt (1 - x^2)
----------------------
y1 = +sqrt (1 - x^2)
y2 = -sqrt (1 - x^2)
x = <-1,+1>
this is also not easily done programaticaly but it is a magnitude easier than #1.
do a 2D plot using equation as predicator
simply loop your view through all pixels and render only those for which the equation is true. So again unit circle:
for (x=-1.0;x<=+1.0;x+=0.001)
for (y=-1.0;y<=+1.0;y+=0.001)
if (fabs((x*x)+(y*y)-1.0)<=1e-6)
plot_pixel(x,y,some_color); // x,y should be rescaled and offset to the actual plot view
So you just convert your equation to implicit form:
x^2 + y^2 = 1
-----------------
x^2 + y^2 - 1 = 0
and compare to zero with some threshold (to avoid FPU accuracy problems):
| x^2 + y^2 - 1 | <= threshold_near_zero
The threshold is half size of plot lines width. So this way you can easily change plot width to any pixel size... As you can see this is easily done programaticaly but the plot is slower as you need to loop through all the pixels of the plot view. The step for x,y for loops should match pixel size of the view scale.
Also while using equation as predicate you should handle math singularities as with blind probing you will most likely hit some like division by zero, domain errors for asin,acos,sqrt,etc.
So for arbitrary 1D non function use #3. unless you got some mighty symbolic math engine for #1 or #2.
Defination of a function : A function f takes an input x, and returns a single output f(x).
Now it means for any input there will be one and only one unique output. Like y = sin(x). this is a function on x and y definnes that function.
For equaltion like (x*x) + (y*y) = 1. there are two possible values of y for a single value of `x, hence it can not be termed as a valid equaltion for a function.
If you need to draw it then one possible solution is to plot two points for a single value of x, i.e. sqrt(1-(x*x)) and other -1*sqrt(1-(x*x)). Plot both the values (one will be positive other will be negative with the same absolute value).

Best way to find all points of lattice in sphere

Given a bunch of arbitrary vectors (stored in a matrix A) and a radius r, I'd like to find all integer-valued linear combinations of those vectors which land inside a sphere of radius r. The necessary coordinates I would then store in a Matrix V. So, for instance, if the linear combination
K=[0; 1; 0]
lands inside my sphere, i.e. something like
if norm(A*K) <= r then
V(:,1)=K
end
etc.
The vectors in A are sure to be the simplest possible basis for the given lattice and the largest vector will have length 1. Not sure if that restricts the vectors in any useful way but I suspect it might. - They won't have as similar directions as a less ideal basis would have.
I tried a few approaches already but none of them seem particularly satisfying. I can't seem to find a nice pattern to traverse the lattice.
My current approach involves starting in the middle (i.e. with the linear combination of all 0s) and go through the necessary coordinates one by one. It involves storing a bunch of extra vectors to keep track of, so I can go through all the octants (in the 3D case) of the coordinates and find them one by one. This implementation seems awfully complex and not very flexible (in particular it doesn't seem to be easily generalizable to arbitrary numbers of dimension - although that isn't strictly necessary for the current purpose, it'd be a nice-to-have)
Is there a nice* way to find all the required points?
(*Ideally both efficient and elegant**. If REALLY necessary, it wouldn't matter THAT much to have a few extra points outside the sphere but preferably not that many more. I definitely do need all the vectors inside the sphere. - if it makes a large difference, I'm most interested in the 3D case.
**I'm pretty sure my current implementation is neither.)
Similar questions I found:
Find all points in sphere of radius r around arbitrary coordinate - this is actually a much more general case than what I'm looking for. I am only dealing with periodic lattices and my sphere is always centered at 0, coinciding with one point on the lattice.
But I don't have a list of points but rather a matrix of vectors with which I can generate all the points.
How to efficiently enumerate all points of sphere in n-dimensional grid - the case for a completely regular hypercubic lattice and the Manhattan-distance. I'm looking for completely arbitary lattices and euclidean distance (or, for efficiency purposes, obviously the square of that).
Offhand, without proving any assertions, I think that 1) if the set of vectors is not of maximal rank then the number of solutions is infinite; 2) if the set is of maximal rank, then the image of the linear transformation generated by the vectors is a subspace (e.g., plane) of the target space, which intersects the sphere in a lower-dimensional sphere; 3) it follows that you can reduce the problem to a 1-1 linear transformation (kxk matrix on a k-dimensional space); 4) since the matrix is invertible, you can "pull back" the sphere to an ellipsoid in the space containing the lattice points, and as a bonus you get a nice geometric description of the ellipsoid (principal axis theorem); 5) your problem now becomes exactly one of determining the lattice points inside the ellipsoid.
The latter problem is related to an old problem (counting the lattice points inside an ellipse) which was considered by Gauss, who derived a good approximation. Determining the lattice points inside an ellipse(oid) is probably not such a tidy problem, but it probably can be reduced one dimension at a time (the cross-section of an ellipsoid and a plane is another ellipsoid).
I found a method that makes me a lot happier for now. There may still be possible improvements, so if you have a better method, or find an error in this code, definitely please share. Though here is what I have for now: (all written in SciLab)
Step 1: Figure out the maximal ranges as defined by a bounding n-parallelotope aligned with the axes of the lattice vectors. Thanks for ElKamina's vague suggestion as well as this reply to another of my questions over on math.se by chappers: https://math.stackexchange.com/a/1230160/49989
function I=findMaxComponents(A,r) //given a matrix A of lattice basis vectors
//and a sphere radius r,
//find the corners of the bounding parallelotope
//built from the lattice, and store it in I.
[dims,vecs]=size(A); //figure out how many vectors there are in A (and, unnecessarily, how long they are)
U=eye(vecs,vecs); //builds matching unit matrix
iATA=pinv(A'*A); //finds the (pseudo-)inverse of A^T A
iAT=pinv(A'); //finds the (pseudo-)inverse of A^T
I=[]; //initializes I as an empty vector
for i=1:vecs //for each lattice vector,
t=r*(iATA*U(:,i))/norm(iAT*U(:,i)) //find the maximum component such that
//it fits in the bounding n-parallelotope
//of a (n-1)-sphere of radius r
I=[I,t(i)]; //and append it to I
end
I=[-I;I]; //also append the minima (by symmetry, the negative maxima)
endfunction
In my question I only asked for a general basis, i.e, for n dimensions, a set of n arbitrary but linearly independent vectors. The above code, by virtue of using the pseudo-inverse, works for matrices of arbitrary shapes and, similarly, Scilab's "A'" returns the conjugate transpose rather than just the transpose of A so it equally should work for complex matrices.
In the last step I put the corresponding minimal components.
For one such A as an example, this gives me the following in Scilab's console:
A =
0.9701425 - 0.2425356 0.
0.2425356 0.4850713 0.7276069
0.2425356 0.7276069 - 0.2425356
r=3;
I=findMaxComponents(A,r)
I =
- 2.9494438 - 3.4186986 - 4.0826424
2.9494438 3.4186986 4.0826424
I=int(I)
I =
- 2. - 3. - 4.
2. 3. 4.
The values found by findMaxComponents are the largest possible coefficients of each lattice vector such that a linear combination with that coefficient exists which still land on the sphere. Since I'm looking for the largest such combinations with integer coefficients, I can safely drop the part after the decimal point to get the maximal plausible integer ranges. So for the given matrix A, I'll have to go from -2 to 2 in the first component, from -3 to 3 in the second and from -4 to 4 in the third and I'm sure to land on all the points inside the sphere (plus superfluous extra points, but importantly definitely every valid point inside) Next up:
Step 2: using the above information, generate all the candidate combinations.
function K=findAllCombinations(I) //takes a matrix of the form produced by
//findMaxComponents() and returns a matrix
//which lists all the integer linear combinations
//in the respective ranges.
v=I(1,:); //starting from the minimal vector
K=[];
next=1; //keeps track of what component to advance next
changed=%F; //keeps track of whether to add the vector to the output
while or(v~=I(2,:)) //as long as not all components of v match all components of the maximum vector
if v <= I(2,:) then //if each current component is smaller than each largest possible component
if ~changed then
K=[K;v]; //store the vector and
end
v(next)=v(next)+1; //advance the component by 1
next=1; //also reset next to 1
changed=%F;
else
v(1:next)=I(1,1:next); //reset all components smaller than or equal to the current one and
next=next+1; //advance the next larger component next time
changed=%T;
end
end
K=[K;I(2,:)]'; //while loop ends a single iteration early so add the maximal vector too
//also transpose K to fit better with the other functions
endfunction
So now that I have that, all that remains is to check whether a given combination actually does lie inside or outside the sphere. All I gotta do for that is:
Step 3: Filter the combinations to find the actually valid lattice points
function points=generatePoints(A,K,r)
possiblePoints=A*K; //explicitly generates all the possible points
points=[];
for i=possiblePoints
if i'*i<=r*r then //filter those that are too far from the origin
points=[points i];
end
end
endfunction
And I get all the combinations that actually do fit inside the sphere of radius r.
For the above example, the output is rather long: Of originally 315 possible points for a sphere of radius 3 I get 163 remaining points.
The first 4 are: (each column is one)
- 0.2425356 0.2425356 1.2126781 - 0.9701425
- 2.4253563 - 2.6678919 - 2.4253563 - 2.4253563
1.6977494 0. 0.2425356 0.4850713
so the remainder of the work is optimization. Presumably some of those loops could be made faster and especially as the number of dimensions goes up, I have to generate an awful lot of points which I have to discard, so maybe there is a better way than taking the bounding n-parallelotope of the n-1-sphere as a starting point.
Let us just represent K as X.
The problem can be represented as:
(a11x1 + a12x2..)^2 + (a21x1 + a22x2..)^2 ... < r^2
(x1,x2,...) will not form a sphere.
This can be done with recursion on dimension--pick a lattice hyperplane direction and index all such hyperplanes that intersect the r-radius ball. The ball intersection of each such hyperplane itself is a ball, in one lower dimension. Repeat. Here's the calling function code in Octave:
function lat_points(lat_bas_mx,rr)
% **globals for hyperplane lattice point recursive function**
clear global; % this seems necessary/important between runs of this function
global MLB;
global NN_hat;
global NN_len;
global INP; % matrix of interior points, each point(vector) a column vector
global ctr; % integer counter, for keeping track of lattice point vectors added
% in the pre-allocated INP matrix; will finish iteration with actual # of points found
ctr = 0; % counts number of ball-interior lattice points found
MLB = lat_bas_mx;
ndim = size(MLB)(1);
% **create hyperplane normal vectors for recursion step**
% given full-rank lattice basis matrix MLB (each vector in lattice basis a column),
% form set of normal vectors between successive, nested lattice hyperplanes;
% store them as columnar unit normal vectors in NN_hat matrix and their lengths in NN_len vector
NN_hat = [];
for jj=1:ndim-1
tmp_mx = MLB(:,jj+1:ndim);
tmp_mx = [NN_hat(:,1:jj-1),tmp_mx];
NN_hat(:,jj) = null(tmp_mx'); % null space of transpose = orthogonal to columns
tmp_len = norm(NN_hat(:,jj));
NN_hat(:,jj) = NN_hat(:,jj)/tmp_len;
NN_len(jj) = dot(MLB(:,jj),NN_hat(:,jj));
if (NN_len(jj)<0) % NN_hat(:,jj) and MLB(:,jj) must have positive dot product
% for cutting hyperplane indexing to work correctly
NN_hat(:,jj) = -NN_hat(:,jj);
NN_len(jj) = -NN_len(jj);
endif
endfor
NN_len(ndim) = norm(MLB(:,ndim));
NN_hat(:,ndim) = MLB(:,ndim)/NN_len(ndim); % the lowest recursion level normal
% is just the last lattice basis vector
% **estimate number of interior lattice points, and pre-allocate memory for INP**
vol_ppl = prod(NN_len); % the volume of the ndim dimensional lattice paralellepiped
% is just the product of the NN_len's (they amount to the nested altitudes
% of hyperplane "paralellepipeds")
vol_bll = exp( (ndim/2)*log(pi) + ndim*log(rr) - gammaln(ndim/2+1) ); % volume of ndim ball, radius rr
est_num_pts = ceil(vol_bll/vol_ppl); % estimated number of lattice points in the ball
err_fac = 1.1; % error factor for memory pre-allocation--assume max of err_fac*est_num_pts columns required in INP
INP = zeros(ndim,ceil(err_fac*est_num_pts));
% **call the (recursive) function**
% for output, global variable INP (matrix of interior points)
% stores each valid lattice point (as a column vector)
clp = zeros(ndim,1); % confirmed lattice point (start at origin)
bpt = zeros(ndim,1); % point at center of ball (initially, at origin)
rd = 1; % initial recursion depth must always be 1
hyp_fun(clp,bpt,rr,ndim,rd);
printf("%i lattice points found\n",ctr);
INP = INP(:,1:ctr); % trim excess zeros from pre-allocation (if any)
endfunction
Regarding the NN_len(jj)*NN_hat(:,jj) vectors--they can be viewed as successive (nested) altitudes in the ndim-dimensional "parallelepiped" formed by the vectors in the lattice basis, MLB. The volume of the lattice basis parallelepiped is just prod(NN_len)--for a quick estimate of the number of interior lattice points, divide the volume of the ndim-ball of radius rr by prod(NN_len). Here's the recursive function code:
function hyp_fun(clp,bpt,rr,ndim,rd)
%{
clp = the lattice point we're entering this lattice hyperplane with
bpt = location of center of ball in this hyperplane
rr = radius of ball
rd = recrusion depth--from 1 to ndim
%}
global MLB;
global NN_hat;
global NN_len;
global INP;
global ctr;
% hyperplane intersection detection step
nml_hat = NN_hat(:,rd);
nh_comp = dot(clp-bpt,nml_hat);
ix_hi = floor((rr-nh_comp)/NN_len(rd));
ix_lo = ceil((-rr-nh_comp)/NN_len(rd));
if (ix_hi<ix_lo)
return % no hyperplane intersections detected w/ ball;
% get out of this recursion level
endif
hp_ix = [ix_lo:ix_hi]; % indices are created wrt the received reference point
hp_ln = length(hp_ix);
% loop through detected hyperplanes (updated)
if (rd<ndim)
bpt_new_mx = bpt*ones(1,hp_ln) + NN_len(rd)*nml_hat*hp_ix; % an ndim by length(hp_ix) matrix
clp_new_mx = clp*ones(1,hp_ln) + MLB(:,rd)*hp_ix; % an ndim by length(hp_ix) matrix
dd_vec = nh_comp + NN_len(rd)*hp_ix; % a length(hp_ix) row vector
rr_new_vec = sqrt(rr^2-dd_vec.^2);
for jj=1:hp_ln
hyp_fun(clp_new_mx(:,jj),bpt_new_mx(:,jj),rr_new_vec(jj),ndim,rd+1);
endfor
else % rd=ndim--so at deepest level of recursion; record the points on the given 1-dim
% "lattice line" that are inside the ball
INP(:,ctr+1:ctr+hp_ln) = clp + MLB(:,rd)*hp_ix;
ctr += hp_ln;
return
endif
endfunction
This has some Octave-y/Matlab-y things in it, but most should be easily understandable; M(:,jj) references column jj of matrix M; the tic ' means take transpose; [A B] concatenates matrices A and B; A=[] declares an empty matrix.
Updated / better optimized from original answer:
"vectorized" the code in the recursive function, to avoid most "for" loops (those slowed it down a factor of ~10; the code now is a bit more difficult to understand though)
pre-allocated memory for the INP matrix-of-interior points (this speeded it up by another order of magnitude; before that, Octave was having to resize the INP matrix for every call to the innermost recursion level--for large matrices/arrays that can really slow things down)
Because this routine was part of a project, I also coded it in Python. From informal testing, the Python version is another 2-3 times faster than this (Octave) version.
For reference, here is the old, much slower code in the original posting of this answer:
% (OLD slower code, using for loops, and constantly resizing
% the INP matrix) loop through detected hyperplanes
if (rd<ndim)
for jj=1:length(hp_ix)
bpt_new = bpt + hp_ix(jj)*NN_len(rd)*nml_hat;
clp_new = clp + hp_ix(jj)*MLB(:,rd);
dd = nh_comp + hp_ix(jj)*NN_len(rd);
rr_new = sqrt(rr^2-dd^2);
hyp_fun(clp_new,bpt_new,rr_new,ndim,rd+1);
endfor
else % rd=ndim--so at deepest level of recursion; record the points on the given 1-dim
% "lattice line" that are inside the ball
for jj=1:length(hp_ix)
clp_new = clp + hp_ix(jj)*MLB(:,rd);
INP = [INP clp_new];
endfor
return
endif

Calculating translation value and rotation angle of a rotated 2D image

I have two images which one of them is the Original image and the second one is Transformed image.
I have to find out how many degrees Transformed image was rotated using 3x3 transformation matrix. Plus, I need to find how far translated from origin.
Both images are grayscaled and held in matrix variables. Their sizes are same [350 500].
I have found a few lecture notes like this.
Lecture notes say that I should use the following matrix formula for rotation:
For translation matrix the formula is given:
Everything is good. But there are two problems:
I could not imagine how to implement the formulas using MATLAB.
The formulas are shaped to find x',y' values but I already have got x,x',y,y' values. I need to find rotation angle (theta) and tx and ty.
I want to know the equivailence of x, x', y, y' in the the matrix.
I have got the following code:
rotationMatrix = [ cos(theta) sin(theta) 0 ; ...
-sin(theta) cos(theta) 0 ; ...
0 0 1];
translationMatrix = [ 1 0 tx; ...
0 1 ty; ...
0 0 1];
But as you can see, tx, ty, theta variables are not defined before used. How can I calculate theta, tx and ty?
PS: It is forbidden to use Image Processing Toolbox functions.
This is essentially a homography recovery problem. What you are doing is given co-ordinates in one image and the corresponding co-ordinates in the other image, you are trying to recover the combined translation and rotation matrix that was used to warp the points from the one image to the other.
You can essentially combine the rotation and translation into a single matrix by multiplying the two matrices together. Multiplying is simply compositing the two operations together. You would this get:
H = [cos(theta) -sin(theta) tx]
[sin(theta) cos(theta) ty]
[ 0 0 1]
The idea behind this is to find the parameters by minimizing the error through least squares between each pair of points.
Basically, what you want to find is the following relationship:
xi_after = H*xi_before
H is the combined rotation and translation matrix required to map the co-ordinates from the one image to the other. H is also a 3 x 3 matrix, and knowing that the lower right entry (row 3, column 3) is 1, it makes things easier. Also, assuming that your points are in the augmented co-ordinate system, we essentially want to find this relationship for each pair of co-ordinates from the first image (x_i, y_i) to the other (x_i', y_i'):
[p_i*x_i'] [h11 h12 h13] [x_i]
[p_i*y_i'] = [h21 h22 h23] * [y_i]
[ p_i ] [h31 h32 1 ] [ 1 ]
The scale of p_i is to account for homography scaling and vanishing points. Let's perform a matrix-vector multiplication of this equation. We can ignore the 3rd element as it isn't useful to us (for now):
p_i*x_i' = h11*x_i + h12*y_i + h13
p_i*y_i' = h21*x_i + h22*y_i + h23
Now let's take a look at the 3rd element. We know that p_i = h31*x_i + h32*y_i + 1. As such, substituting p_i into each of the equations, and rearranging to solve for x_i' and y_i', we thus get:
x_i' = h11*x_i + h12*y_i + h13 - h31*x_i*x_i' - h32*y_i*x_i'
y_i' = h21*x_i + h22*y_i + h23 - h31*x_i*y_i' - h32*y_i*y_i'
What you have here now are two equations for each unique pair of points. What we can do now is build an over-determined system of equations. Take each pair and build two equations out of them. You will then put it into matrix form, i.e.:
Ah = b
A would be a matrix of coefficients that were built from each set of equations using the co-ordinates from the first image, b would be each pair of points for the second image and h would be the parameters you are solving for. Ultimately, you are finally solving this linear system of equations reformulated in matrix form:
You would solve for the vector h which can be performed through least squares. In MATLAB, you can do this via:
h = A \ b;
A sidenote for you: If the movement between images is truly just a rotation and translation, then h31 and h32 will both be zero after we solve for the parameters. However, I always like to be thorough and so I will solve for h31 and h32 anyway.
NB: This method will only work if you have at least 4 unique pairs of points. Because there are 8 parameters to solve for, and there are 2 equations per point, A must have at least a rank of 8 in order for the system to be consistent (if you want to throw in some linear algebra terminology in the loop). You will not be able to solve this problem if you have less than 4 points.
If you want some MATLAB code, let's assume that your points are stored in sourcePoints and targetPoints. sourcePoints are from the first image and targetPoints are for the second image. Obviously, there should be the same number of points between both images. It is assumed that both sourcePoints and targetPoints are stored as M x 2 matrices. The first columns contain your x co-ordinates while the second columns contain your y co-ordinates.
numPoints = size(sourcePoints, 1);
%// Cast data to double to be sure
sourcePoints = double(sourcePoints);
targetPoints = double(targetPoints);
%//Extract relevant data
xSource = sourcePoints(:,1);
ySource = sourcePoints(:,2);
xTarget = targetPoints(:,1);
yTarget = targetPoints(:,2);
%//Create helper vectors
vec0 = zeros(numPoints, 1);
vec1 = ones(numPoints, 1);
xSourcexTarget = -xSource.*xTarget;
ySourcexTarget = -ySource.*xTarget;
xSourceyTarget = -xSource.*yTarget;
ySourceyTarget = -ySource.*yTarget;
%//Build matrix
A = [xSource ySource vec1 vec0 vec0 vec0 xSourcexTarget ySourcexTarget; ...
vec0 vec0 vec0 xSource ySource vec1 xSourceyTarget ySourceyTarget];
%//Build RHS vector
b = [xTarget; yTarget];
%//Solve homography by least squares
h = A \ b;
%// Reshape to a 3 x 3 matrix (optional)
%// Must transpose as reshape is performed
%// in column major format
h(9) = 1; %// Add in that h33 is 1 before we reshape
hmatrix = reshape(h, 3, 3)';
Once you are finished, you have a combined rotation and translation matrix. If you want the x and y translations, simply pick off column 3, rows 1 and 2 in hmatrix. However, we can also work with the vector of h itself, and so h13 would be element 3, and h23 would be element number 6. If you want the angle of rotation, simply take the appropriate inverse trigonometric function to rows 1, 2 and columns 1, 2. For the h vector, this would be elements 1, 2, 4 and 5. There will be a bit of inconsistency depending on which elements you choose as this was solved by least squares. One way to get a good overall angle would perhaps be to find the angles of all 4 elements then do some sort of average. Either way, this is a good starting point.
References
I learned about homography a while ago through Leow Wee Kheng's Computer Vision course. What I have told you is based on his slides: http://www.comp.nus.edu.sg/~cs4243/lecture/camera.pdf. Take a look at slides 30-32 if you want to know where I pulled this material from. However, the MATLAB code I wrote myself :)

How to filter a set of 2D points moving in a certain way

I have a list of points moving in two dimensions (x- and y-axis) represented as rows in an array. I might have N points - i.e., N rows:
1 t1 x1 y1
2 t2 x2 y2
.
.
.
N tN xN yN
where ti, xi, and yi, is the time-index, x-coordinate, and the y-coordinate for point i. The time index-index ti is an integer from 1 to T. The number of points at each such possible time index can vary from 0 to N (still with only N points in total).
My goal is the filter out all the points that do not move in a certain way; or to keep only those that do. A point must move in a parabolic trajectory - with decreasing x- and y-coordinate (i.e., moving to the left and downwards only). Points with other dynamic behaviour must be removed.
Can I use a simple sorting mechanism on this array - and then analyse the order of the time-index? I have also considered the fact each point having the same time-index ti are physically distinct points, and so should be paired up with other points. The complexity of the problem grew - and now I turn to you.
NOTE: You can assume that the points are confined to a sub-region of the (x,y)-plane between two parabolic curves. These curves intersect only at only at one point: A point close to the origin of motion for any point.
More Information:
I have made some datafiles available:
MATLAB datafile (1.17 kB)
same data as CSV with semicolon as column separator (2.77 kB)
Necessary context:
The datafile hold one uint32 array with 176 rows and 5 columns. The columns are:
pixel x-coordinate in 175-by-175 lattice
pixel y-coordinate in 175-by-175 lattice
discrete theta angle-index
time index (from 1 to T = 10)
row index for this original sorting
The points "live" in a 175-by-175 pixel-lattice - and again inside the upper quadrant of a circle with radius 175. The points travel on the circle circumference in a counterclockwise rotation to a certain angle theta with horizontal, where they are thrown off into something close to a parabolic orbit. Column 3 holds a discrete index into a list with indices 1 to 45 from 0 to 90 degress (one index thus spans 2 degrees). The theta-angle was originally deduces solely from the points by setting up the trivial equations of motions and solving for the angle. This gives rise to a quasi-symmetric quartic which can be solved in close-form. The actual metric radius of the circle is 0.2 m and the pixel coordinate were converted from pixel-coordinate to metric using simple linear interpolation (but what we see here are the points in original pixel-space).
My problem is that some points are not behaving properly and since I need to statistics on the theta angle, I need to remove the points that certainly do NOT move in a parabolic trajoctory. These error are expected and fully natural, but still need to be filtered out.
MATLAB plot code:
% load data and setup variables:
load mat_points.mat;
num_r = 175;
num_T = 10;
num_gridN = 20;
% begin plotting:
figure(1000);
clf;
plot( ...
num_r * cos(0:0.1:pi/2), ...
num_r * sin(0:0.1:pi/2), ...
'Color', 'k', ...
'LineWidth', 2 ...
);
axis equal;
xlim([0 num_r]);
ylim([0 num_r]);
hold all;
% setup grid (yea... went crazy with one):
vec_tickValues = linspace(0, num_r, num_gridN);
cell_tickLabels = repmat({''}, size(vec_tickValues));
cell_tickLabels{1} = sprintf('%u', vec_tickValues(1));
cell_tickLabels{end} = sprintf('%u', vec_tickValues(end));
set(gca, 'XTick', vec_tickValues);
set(gca, 'XTickLabel', cell_tickLabels);
set(gca, 'YTick', vec_tickValues);
set(gca, 'YTickLabel', cell_tickLabels);
set(gca, 'GridLineStyle', '-');
grid on;
% plot points per timeindex (with increasing brightness):
vec_grayIndex = linspace(0,0.9,num_T);
for num_kt = 1:num_T
vec_xCoords = mat_points((mat_points(:,4) == num_kt), 1);
vec_yCoords = mat_points((mat_points(:,4) == num_kt), 2);
plot(vec_xCoords, vec_yCoords, 'o', ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', vec_grayIndex(num_kt) * ones(1,3) ...
);
end
Thanks :)
Why, it looks almost as if you're simulating a radar tracking debris from the collision of two missiles...
Anyway, let's coin a new term: object. Objects are moving along parabolae and at certain times they may emit flashes that appear as points. There are also other points which we are trying to filter out.
We will need some more information:
Can we assume that the objects obey the physics of things falling under gravity?
Must every object emit a point at every timestep during its lifetime?
Speaking of lifetime, do all objects begin at the same time? Can some expire before others?
How precise is the data? Is it exact? Is there a measure of error? To put it another way, do we understand how poorly the points from an object might fit a perfect parabola?
Sort the data with (index,time) as keys and for all locations of a point i see if they follow parabolic trajectory?
Which part are you facing problem? Sorting should be very easy. IMHO, it is the second part (testing if a set of points follow parabolic trajectory) that is difficult.

Resources