Consider index field "ProductName" having the value "dove 3.75oz" and when user searches for "dove 3.75oz" text below bool query is working fine to retreive the document:
{"bool":{"must":[{"wildcard":{"ProductName":{"value":"dove"}}},{"wildcard":{"ProductName":{"value":"3.75oz"}}}]}}
If user searches for "dove 3.75 oz" (Space between "3.75" and "oz") the bool query is failing to retrieve the same document:
{"bool":{"must":[{"wildcard":{"ProductName":{"value":"dove"}}},{"wildcard":{"ProductName":{"value":"3.75 oz"}}}]}}
Question: How to design a query using a wildcard query that supports space or no spaces? Please share an example.
Text fields values are broken into tokens by default and then stored. So something like "hello man"" will be saved separately as hello and man because of the space between them. And that is exactly why this will not work with a wildcard query.
{"wildcard":{"ProductName":{"value":"3.75 oz"}}}
It only works for single tokens. For wildcard queries you can use a special field type called wildcard.
If you do not want to reindex your data, try phrase search like:
"match_phrase": {
"ProductName": {
"query": "3.75 oz"
}
}
Related
recently I made a change to the way ids were being generated in my ES index. Previously, we were generating the ids in the code, using a format like: uuid_WEEKDAY_COUNTRY_TIMESTAMP
I removed this and instead let the value of this field be auto-generated by ES (as i guess it should be)
How can i write a query that checks none of the old-format ids are still being generated? I tried something like
GET /_search
{
"query": {
"query_string": {
"query": "*WEDNESDAY*",
"default_field": "_id"
}
}
}
But got errors saying i can't query _id field, only text or keyword
how can i do this otherwise?
thanks
The _id field is special field handled in elastic search as the ID of the document. It is not indexed field like other text fields, though we can set the value , for documents where we do not specify this field it is actually "generated" based on the UID of the document (see: https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-id-field.html 2.8k).
The drop side of this is that , this field only supports a limited subset of the query functionality. One way to get over this is to add a field called id_field (as a text / keyword) into the document itself and then term queries on this field
How can I achieve that a match query for certain fields is equivalent to a term query?
I have a larger index in Elastic covering events. Each event has an eventid field consisting of a random hex string (e.g. f4fc38c993c1a8273f9c40eedc9050b7) as well as some other fields. The eventid is indexed as keyword in Elastic.
If I query based on this field in Kibana, the query often runs into timeouts, because Kibana automatically generates a match query for eventid:f4fc38c993c1a8273f9c40eedc9050b7.
If I set a manual filter using { "query": { "term": { "eventid": "f4fc38c993c1a8273f9c40eedc9050b7" } } } (so a term instead of match query) I get a response quite quickly.
From my understanding, these should be pretty much equivalent, as keyword fields aren't analyzed, so the match query should be equivalent to a term query.
What am I missing?
I'm confused on what index type I should apply for my field for prefix search, many show search_as_you_type but I think auto complete is not what I'm going for.
I have a UUID field:
id: 34y72ca1-3739-41ff-bbec-f6d17479384c
The following terms should return the doc above:
3
34
34y72ca1
34y72ca1-3739
34y72ca1-3739-41ff-bbec-f6d17479384c
Using 3739 should not return it as it doesn't start with 3739. Initially this is what I was going for but then the wildcard field is not supported by Amazon AWS, so I compromise for prefix search instead of partial search.
I tried search_as_you_type field but it doesn't return the result when I use the whole ID. Actually, my use case is when user click enter, the results will be shown, instead of real-live when they type, so if speed is compromised its OK, just that I hope for something that will be good for many rows of data.
Thanks
If you have not explicitly defined any index mapping, then you need to use id.keyword field instead of the id field for the prefix query to show the appropriate results. This uses the keyword analyzer instead of the standard analyzer
{
"query": {
"prefix": {
"id.keyword": {
"value": "34y72ca1"
}
}
}
}
Otherwise, you can modify your index mapping, by adding multi fields for id field
I have a document with fields:
"provider": "AppStore",
"device_model": "iPad3,6[graphicsDeviceName: PowerVR SGX 554]",
"days_in_game": 34,
And I need to get all documents with iPad string in device_model!
Is it possible?
There are two types of search queries in Elasticsearch ie. term queries and match queries. The match first analyzes the query string, then looks for documents containing the words in the query and returns result depending upon how closely it matches.
What the term query does is basically a yes or no query and will return only the documents that have an exact match.
I think for your case a term query is better fit. And since field does not contain the exact word iPad but something like iPad3 you should use a prefix, wildcard or possibly a regexp query depending upon what your document actually contain(take a look at this)
You could use the following query:
{
"query": {
"prefix": {
"device_model": "iPad"
}
}
I have been having trouble writing a method that will take in various search parameters in elasticsearch. I was working with queries that looked like this:
body:
{query:
{filtered:
{filter:
{and:
[
{term: {some_term: "foo"}},
{term: {is_visible: true}},
{term: {"term_two": "something"}}]
}
}
}
}
Using this syntax I thought I could chain these terms together and programatically generate these queries. I was using simple strings and if there was a term like "person_name" I could split the query into two and say "where person_name match 'JOHN'" and where person_name match 'SMITH'" getting accurate results.
However, I just came across the "fquery" upon asking this question:
Escaping slash in elasticsearch
I was not able to use this "and"/"term" filter searching a value with slashes in it, so I learned that I can use fquery to search for the full value, like this
"fquery": {
"query": {
"match": {
"by_line": "John Smith"
But how can I search like this for multiple items? IT seems that when i combine fquery and my filtered/filter/and/term queries, my "and" term queries are ignored. What is the best practice for making nested / chained queries using elastic search ?
As in the comment below, yes I can just add fquery to the "and" block like so
{:filtered=>
{:filter=>
{:and=>[
{:term=>{:is_visible=>true}},
{:term=>{:is_private=>false}},
{:fquery=>
{:query=>{:match=>{:sub_location=>"New JErsey"}}}}]}}}
Why would elasticsearch also return results with "sub_location" = "new York"? I would like to only return "new jersey" here.
A match query analyzes the input and by default it is a boolean OR query if there are multiple terms after the analysis. In your case, "New JErsey" gets analyzed into the terms "new" and "jersey". The match query that you are using will search for documents in which the indexed value of field "sub_location" is either "new" or "jersey". That is why your query also matches documents where the value of field "sub_location" is "new York" because of the common term "new".
To only match for "new jersey", you can use the following version of the match query:
{
"query": {
"match": {
"sub_location": {
"query": "New JErsey",
"operator": "and"
}
}
}
}
This will not match documents where the value of field "sub_location" is "New York". But, it will match documents where the value of field "sub_location" is say "York New" because the query finally translates into a boolean query like "York" AND "New". If you are fine with this behaviour, well and good, else read further.
All these issues arise because you are using the default analyzer for the field "sub_location" which breaks tokens at word boundaries and indexes them. If you really do not care about partial matches and want to always match the entire string, you can make use of custom analyzers to use Keyword Tokenizer and Lowercase Token Filter. Mind you, going ahead with this approach will need you to re-index all your documents again.