I have written down a simple code using openmp in fixed form fortran.My code is running but the result produced by it is wrong.can anybody help me out?
Implicit none
integer i,N,CHUNKSIZE
parameter(N=100)
parameter(CHUNKSIZE=7)
double precision X(N), Y(N), XdotY
integer :: threadNUM, OMP_GET_THREAD_NUM
XdotY=0.0d0
!$OMP PARALLEL DO LASTPRIVATE(X,Y)
do I=1,N
X(I)=I
Y(I)=I**2
write(*,*) x(i),y(i)
end do
!$OMP END PARALLEL DO
!$OMP PARALLEL DO
C$OMP&REDUCTION(+:XdotY)
do I=1,N
XdotY = XdotY + X(I)*Y(I)
end do
!$OMP END PARALLEL DO
write(*,*)'X.Y=', XdotY
write(*,*)'the exact answer is =', (N*(N+1)/2.0d0)**2
end
Here the answer is not matching.
The following is the result -
X.Y= 17380000.000000000
the exact answer is = 25502500.000000000
And i am compiling it by the command - 'gfortran -fopenmp dotprod_OMP.f90 -o dotprod_OMP'.
also, i have done this in an f90 file.
the following is the code -
Implicit none
integer i
integer,parameter :: N=100
integer,parameter :: CHUNKSIZE=7
double precision :: X(N), Y(N), XdotY
integer :: threadNUM, OMP_GET_THREAD_NUM
XdotY=0.0d0
!$OMP PARALLEL DO LASTPRIVATE(X,Y)
do I=1,N
X(I)=I
Y(I)=I**2
!write(*,*) x(i),y(i)
end do
!$OMP END PARALLEL DO
!$OMP PARALLEL DO
!$OMP REDUCTION(+:XdotY)
do I=1,N
XdotY = XdotY + X(I)*Y(I)
end do
!$OMP END PARALLEL DO
write(*,*)'X.Y=', XdotY
write(*,*)'the exact answer is =', (N*(N+1)/2.0d0)**2
end
there is an error after compilation.
the error shows this -
25 | !$OMP REDUCTION(+:XdotY)
| 1
Error: Unclassifiable OpenMP directive at (1)
I think the reduction clause is not working. how can i solve this?
From the Microsoft Learn documentation of OpenMP which states that the lastprivate clause:
Specifies that the enclosing context's version of the variable is set
equal to the private version of whichever thread executes the final
iteration (for-loop construct) or last section.
(I also checked the OpenMP specification (v5.2) which states the same, but at much more length and with many more ifs and buts, none of which are applicable here. And I'm fairly sure that the fundamental behaviour of lastprivate hasn't changed since either OpenMP 1.0 or since when MS wrote their documentation.)
In this case lastprivate means that only the updates made to X and Y by one thread 'escape' to the rest of the program. The fact that OP writes (and my own tests confirm) that removing the clause fixes the program makes me believe that the wrong use of the clause was the problem.
I think that a continuation should be placed on the following lines (although this may have changed with later versions of OpenMP?)
!$OMP PARALLEL DO &
!$OMP REDUCTION(+:XdotY)
The following modified code appears to produce the correct result.
implicit none
integer i
integer,parameter :: N=100
integer,parameter :: CHUNKSIZE=7
double precision :: X(N), Y(N), XdotY
integer :: threadNUM, OMP_GET_THREAD_NUM
XdotY=0.0d0
!$OMP PARALLEL DO default(none) shared(x,y)
do I=1,N
X(I)=I
Y(I)=I**2
!write(*,*) x(i),y(i)
end do
!$OMP END PARALLEL DO
!$OMP PARALLEL DO default(none) shared(x,y) &
!$OMP REDUCTION(+:XdotY)
do I=1,N
XdotY = XdotY + X(I)*Y(I)
end do
!$OMP END PARALLEL DO
write(*,*)'X.Y=', XdotY
write(*,*)'the exact answer is =', (N*(N+1)/2.0d0)**2
end
I have :-
included implicit none and default(none) as these provide better diagnostics,
Treated X and Y as shared,
Provided a continuation in !$omp syntax.
I am not sure why you did no get an error without the continuation, but this may relate to the OpenMP version you have available. I am using Gfortran Ver 11.1 on Win 10. This does not support OpenMP Ver 5.
For clarification, you could report the thread number uses for each "i" in either loop.
So I am doing 2 modules which are linking to the main program. The first one has all the variables defined in it and the second one is with the functions.
Module1:
module zmienne
implicit none
integer, parameter :: ngauss = 8
integer, parameter :: out_unit=1000
integer, parameter :: out_unit1=1001
integer, parameter :: out_unit2=1002, out_unit3=1003
real(10), parameter :: error=0.000001
real(10):: total_calka, division,tot_old,blad
real(10),parameter:: intrange=7.0
real(10),dimension(ngauss),parameter::xx=(/-0.9602898565d0,&
-0.7966664774d0,-0.5255324099d0,-0.1834346425d0,&
0.1834346425d0,0.5255324099d0,0.7966664774d0,0.9602898565d0/)
real(10),Dimension(ngauss),parameter::ww=(/0.1012285363d0,&
0.2223810345d0,0.3137066459d0,0.3626837834d0,&
0.3626837834d0,0.3137066459d0,0.2223810345d0,0.1012285363d0/)
real(10) :: r, u, r6, tempred, f, r2, r1, calka,beta
real(10) :: inte
real :: start, finish
integer:: i,j,irange
real(10),dimension(ngauss)::x,w,integrand
end module zmienne
Module2
module in
implicit none
contains
real(10) function inte(y,beta,r2,r1)
real(kind=10)::r,beta,r6,r2,r1,u,y
r=(r2-r1)*y+r1
r6=(1.0/r)**6
u=beta*r6*(r6-1.0d0)
if (u>100.d0) then
inte=-1.0d0
else
inte=exp(-u)-1.d0
endif
inte=r*r*inte
end function
end module in
And while im calling them like that:
use zmienne; use in
I am getting following error:
Name 'inte' at (1) is an ambiguous reference to 'inte' from module 'zmienne'
I've deleted "inte" in the module1 but now I am getting following error:
irange=inte(intrange/division)
1
Error: Missing actual argument for argument 'beta' at (1)
The main program code is:
program wykres
use zmienne; use in
implicit none
open(unit=out_unit, file='wykresik.dat', action='write', status='replace')
open(unit=out_unit1, file='wykresik1.dat', action='write')
open(unit=out_unit2, file='wykresik2.dat', action='write')
open(out_unit3, file='wykresik3.dat', action='write')
! the gaussian points (xx) and weights (ww) are for the [-1,1] interval
! for [0,1] interval we have (vector instr.)
x=0.5d0*(xx+1.0d0)
w=0.5d0*ww
! plots
tempred = 1.0
call cpu_time(start)
do i=1,1000
r=float(i)*0.01
r6=(1.0/r)**6
u=beta*r6*(r6-1.0)
f=exp(-u/tempred)-1.0
write(out_unit,*) r, u
write(out_unit1,*)r, f
write(out_unit2,*)r, r*r*f
end do
call cpu_time(finish)
print '("Time = ",f6.3," seconds.")',finish-start
! end of plots
! integration 1
calka=0.0
r1=0.0
r2=0.5
do i=1,ngauss
r=(r2-r1)*x(i)+r1
r6=(1.0/r)**6
u=beta*r6*(r6-1.0d0)
! check for underflows
if (u>100.d0) then
f=-1.0d0
else
f=exp(-u)-1.d0
endif
! the array integrand is introduced in order to perform vector calculations below
integrand(i)=r*r*f
calka=calka+integrand(i)*w(i)
enddo
calka=calka*(r2-r1)
write(*,*)calka
! end of integration
! integration 2
calka=0.0
do i=1,ngauss
integrand(i)=inte(x(i),beta,r2,r1)
calka=calka+integrand(i)*w(i)
enddo
calka=calka*(r2-r1)
! end of integration 2
write(*,*)calka
! vector integration and analytical result
write(*,*)sum(integrand*w*(r2-r1)),-(0.5**3)/3.0
!**************************************************************
! tot_calka - the sum of integrals all integration ranges
! dividion the initial length of the integration intervals
! tot_old - we will compare the results fro two consecutive divisions.
! at the beginning we assume any big number
! blad - the difference between two consecutive integrations,
! at the beginning we assume any big number
! error - assumed precission, parameter, it is necassary for
! performing do-while loop
total_calka=0.0
division=0.5
tot_old=10000.0
blad=10000.0
do while (blad>error)
! intrange - the upper integration limit, it should be estimated
! analysing the plot of the Mayer function. Here - 7.
! irange = the number of subintegrals we have to calculate
irange=inte(intrange/division)
total_calka=-(0.5**3)/3.0
! the analytical result for the integration range [0,0.5]
! the loop over all the intervals, for each of them we calculate
! lower and upper limits, r1 and r2
do j=1,irange
r1=0.5+(j-1)*division
r2=r1+division
calka=0.0
! the integral for a given interval
do i=1,ngauss
integrand(i)=inte(x(i),beta,r2,r1)
calka=calka+integrand(i)*w(i)
enddo
total_calka=total_calka+calka*(r2-r1)
enddo
! aux. output: number of subintervals, old and new integrals
write(*,*) irange,division,tot_old,total_calka
division=division/2.0
blad=abs(tot_old-total_calka)
tot_old=total_calka
! and the final error
write(*,*) blad
enddo
open(1,file='calka.dat', access='append')
! the secod viarial coefficient=CONSTANT*total_calka,
! CONSTANT is omitted here
write(1,*)tempred,total_calka
close(1)
end program wykres
The inte is declared in both modules.
Upd. The inte(y,beta,r2,r1) function is defined in the module in, and is used in the main program. This function requires four arguments, but this call
irange=inte(intrange/division)
provides only one argument. I'm not sure if this function should be used in this case. Try to use long meaningful names for variables and functions to avoid similar issues.
In the main part of my Fortran code I have this lines
Gmat=0
do i=1,indCompMax
do j=(i-1)*useSymFlag+1,nsit-(i-1)*useSymFlag
l=1
do while (G0poles(l,2)/=0)
Gmat(i,j)=Gmat(i,j)+real(G0int(i,j,l))/(omega(k)-G0poles(l,1))**G0poles(l,3)
l=l+1
enddo
enddo
enddo
call ExtendBySymmetry(Gmat)
This part is repeated several times in the code so I defined this subroutine
!=============================================================================
SUBROUTINE EvaluateFunc(matrixPol,matrixInt,z,matrix)
use NAGmodule
integer i,j,k
REAL*8, DIMENSION(Npoles,3) :: matrixPol
COMPLEX*16, DIMENSION(nsit,nsit,Npoles) :: matrixInt
COMPLEX*16, DIMENSION(nsit,nsit) :: matrix
COMPLEX*16 :: z
do i=1,indCompMax
do j=(i-1)*useSymFlag+1,nsit-(i-1)*useSymFlag
k=1
do while (matrixPol(k,2)/=0)
matrix(i,j)=matrix(i,j)+real(matrixInt(i,j,k))/(z-matrixPol(k,1))**matrixPol(k,3)
k=k+1
enddo
enddo
enddo
call ExtendBySymmetry(matrix)
end
The problem is that if I use this subroutine the evaluation of the output matrix takes much longer (around 5 times slower) than the same evaluation but made directly in the main part of the code.
How can I optimize the code and make the evaluation made with the subroutine faster?
UPDATE: Thanks for the reply. First, the operation **matrixPol(k,3) is present also in the main code, I forgot to write it in the post.
For the comparison (matrixPol(k,2)/=0) there is no problem because actually starting from a certain position of the vector all the elements are exactly zero.
Computing the prefactor outside the i,j loop helped to speed the subroutine. And switching the two indices i and j has practically no effect. Here are the running times of the subroutine
All in the main part
1.688s
my old subroutine
19.063s
with factor outside the loop i,j
5.193s
Switching the indices i and j
5.281s
with dot_product
4.958s
But the subroutine is still more than 2.5 time slower.
Here is a minimal example:
module NAGmodule
implicit none
real*8, allocatable :: hmat(:,:),eval(:),eigmat(:,:)
real*8, allocatable :: G0poles(:,:)
complex*16, allocatable :: G0int(:,:,:)
complex*16, allocatable :: Gmat(:,:)
real*8, allocatable :: omega(:)
integer :: numpoles, halffillingflag, iter, indCompMax
complex*16 :: omegaComplex
real*8, parameter :: pi=3.141592653589793
integer, parameter :: out_unit=10
integer, parameter :: timeFag=1
integer :: counti, countf, count_rate
real :: dt
integer, parameter :: Npoles=1000
real*8, parameter :: U=4
real*8, parameter :: omegamin=-20
real*8, parameter :: omegamax=20
integer, parameter :: Nomega=1500000
integer, parameter :: nsit = 4
integer, parameter :: nup = 1
integer, parameter :: ndw = 1
integer, parameter :: PBCflag=1
integer, parameter :: useSymFlag=1
end module NAGmodule
use nagmodule
integer :: i,j,k,l,m,n,p,q
REAL*8 t1,t2
allocate(hmat(nsit,nsit),eigmat(nsit,nsit),eval(nsit))
allocate(G0poles(Npoles,3),G0int(nsit,nsit,Npoles))
allocate(omega(Nomega))
allocate(Gmat(nsit,nsit))
indCompMax=1
hmat=0.
do i=1,(nsit-1)
hmat(i,i+1)=-1
hmat(i+1,i)=-1
enddo
if (PBCflag==1) then
hmat(1,nsit)=-1
hmat(nsit,1)=-1
end if
call NAGdiag(nsit)
eigmat=hmat
do k=1,Nomega
omega(k)=(omegamax-omegamin)/(Nomega-1)*(k-1)+omegamin
enddo
do k=1,nup
G0poles(k,1)=eval(k)
G0poles(k,2)=-1
G0poles(k,3)=1
enddo
do k=(nup+1),nsit
G0poles(k,1)=eval(k)
G0poles(k,2)=1
G0poles(k,3)=1
enddo
do k=1,nsit
G0int(k,k,k)=1
if ((k==nup).AND.(abs(eval(k)-eval(k+1))<1e-15)) then
G0int(k,k,k)=0.5
G0int(k+1,k+1,k)=0.5
else if ((k==nup+1).AND.(abs(eval(k)-eval(k-1))<1e-15)) then
G0int(k,k,k)=0.5
G0int(k-1,k-1,k)=0.5
end if
enddo
do k=1,nsit
G0int(:,:,k)=matmul(eigmat,matmul(G0int(:,:,k),transpose(eigmat)))
enddo
t1=0
t2=0
do k=1,Nomega
omegaComplex=CMPLX(omega(k),0)
call system_clock(counti,count_rate)
Gmat=0
call EvaluateFunc3(G0poles,G0int,omegaComplex,Gmat)
call system_clock(countf)
dt=REAL(countf-counti)/REAL(count_rate)
t1=t1+dt
call system_clock(counti,count_rate)
Gmat=0
do i=1,indCompMax
do j=(i-1)*useSymFlag+1,nsit-(i-1)*useSymFlag
l=1
do while (G0poles(l,2)/=0)
Gmat(i,j)=Gmat(i,j)+real(G0int(i,j,l))/(omega(k)-G0poles(l,1))
l=l+1
enddo
enddo
enddo
call ExtendBySymmetry(Gmat)
call system_clock(countf)
dt=REAL(countf-counti)/REAL(count_rate)
t2=t2+dt
enddo
write(*,*)'time with subroutine',t1
write(*,*)'time main',t2
stop
end
!=================================================================================
SUBROUTINE EvaluateFunc3(matrixPol,matrixInt,z,matrix)
use NAGmodule
integer i,j,k
REAL*8, DIMENSION(Npoles,3) :: matrixPol
COMPLEX*16, DIMENSION(nsit,nsit,Npoles) :: matrixInt
COMPLEX*16, DIMENSION(nsit,nsit) :: matrix
COMPLEX*16 :: z
integer :: maxPoles
COMPLEX*16, DIMENSION(Npoles) :: factor
maxPoles=0
do while (matrixPol(maxPoles+1,2)/=0)
maxPoles=maxPoles+1
enddo
factor(:maxPoles) = (1.,0.)/(z-matrixPol(:maxPoles,1))**matrixPol(:maxPoles,3)
do j=1,indCompMax
do i=(j-1)*useSymFlag+1,nsit-(j-1)*useSymFlag
matrix(i,j)=matrix(i,j)+dot_product(matrixInt(i,j,1:maxPoles),factor(1:maxPoles))
enddo
enddo
call ExtendBySymmetry2(matrix)
end
!=================================================================================
SUBROUTINE ExtendBySymmetry2(matrix)
use NAGmodule
COMPLEX*16, DIMENSION(nsit,nsit) :: matrix
integer k,i,j,l,m
if ((PBCflag==1).AND.(useSymFlag==1)) then
do i=2,nsit
matrix(2:nsit,i)=matrix(1:nsit-1,i-1)
matrix(1,i)=matrix(nsit,i-1)
enddo
else if ((PBCflag==0).AND.(useSymFlag==1)) then
do j=1,nsit/2
do i=j,nsit-j+1
matrix(j,i)=matrix(i,j)
matrix(nsit-i+1,nsit-j+1)=matrix(i,j)
matrix(nsit-j+1,nsit-i+1)=matrix(i,j)
enddo
enddo
end if
end
!=================================================================================
SUBROUTINE ExtendBySymmetry(matrix)
use NAGmodule
COMPLEX*16, DIMENSION(nsit,nsit) :: matrix
integer k,i,j,l,m
if ((PBCflag==1).AND.(useSymFlag==1)) then
do i=2,nsit
matrix(i,2:nsit)=matrix(i-1,1:nsit-1)
matrix(i,1)=matrix(i-1,nsit)
enddo
else if ((PBCflag==0).AND.(useSymFlag==1)) then
do i=1,nsit/2
do j=i,nsit-i+1
matrix(j,i)=matrix(i,j)
matrix(nsit-i+1,nsit-j+1)=matrix(i,j)
matrix(nsit-j+1,nsit-i+1)=matrix(i,j)
enddo
enddo
end if
end
!=================================================================================
SUBROUTINE NAGdiag(nsit1)
use NAGmodule
real*8, allocatable :: WORK(:)
integer, allocatable :: IWORK(:)
CHARACTER JOB, UPLO
EXTERNAL dsyevd
NMAX=nsit1
LDA=NMAX
LWORK=4*NMAX*NMAX+100
LIWORK=5*NMAX
LIWORK=10*NMAX
ALLOCATE(WORK(LWORK),IWORK(LIWORK))
JOB='V'
UPLO='L'
CALL dsyevd(JOB,UPLO,nsit1,hmat,LDA,eval,WORK,LWORK,IWORK,LIWORK,INFO)
IF (INFO.GT.0) THEN
WRITE (*,*) 'Failure to converge.'
stop
endif
deALLOCATE(WORK,IWORK)
return
end`
Due to several edits of the original question, the answer is partially superfluous by now. However, the optimization part is still valid.
The real issue with you code is that you are passing z as a complex number to the subroutine (omegaComplex), while omega(k) is real. This results in the exponentiation and division being performed as complex operations instead of real ones.
Fixing z to be real (and factor in the optimization as well) leads to the expected results. With optimizations I get:
time with subroutine 0.24000001139938831
time main 0.35700001695659012
Original answer:
First of all, the subroutine does not do the same operations that your inline code does. The operation **matrixPol(k,3) is the power to a complex number which involves a heavy computational effort. No wonder the subroutine is a lot slower.
I see a few possibilities to accelerate your code:
The divisor (z-matrixPol(k,1))**matrixPol(k,3) is independent of i and j and can be taken out of the loop.
Divisions are more expensive than multiplications. Therefore, you should pre-compute factor = 1/div outside the loop, and multiply with factor in the loop.
The comparison (matrixPol(k,2)/=0) will almost never be true, unless you set the corresponding values to exactly zero. I assume you know the order of your poles before you call the subroutine, so why not pass it along and save yourself this comparison? If that is not possible, determine the number of poles inside the subroutine before the main loop. Then, the inner loop over k is much simpler.
Inside the loop, you convert the input matrix to real over and over again. This can be done outside the loop in one go. Or, even better, just pass only the real part to the function!
At this point your code looks something like:
!=============================================================================
SUBROUTINE EvaluateFunc(matrixPol,matrixInt,z,matrix)
use NAGmodule
integer i,j,k
REAL*8, DIMENSION(Npoles,3) :: matrixPol
COMPLEX*16, DIMENSION(nsit,nsit,Npoles) :: matrixInt
COMPLEX*16, DIMENSION(nsit,nsit) :: matrix
COMPLEX*16 :: z, factor(Npoles)
REAL*8, DIMENSION(nsit,nsit,Npoles) :: matrixInt_re
integer :: maxPoles
! Determine maximum number of poles
do k=1,Npoles
! Only valid if the poles are set to exactly zero outside. If not,
! use ( abs(matrixPol(k,2)) <= someEpsilon )
if ( matrixPol(k,2) == 0 ) then
maxPoles = k-1
exit
endif
enddo
! Pre-compute factors
factor(:maxPoles) = (1.,0.)/(z-matrixPol(:maxPoles,1))**matrixPol(:maxPoles,3)
! Convert input to real
matrixInt_re = real(matrixInt)
do i=1,indCompMax
do j=i,nsit-i+1
do k=1,maxPoles
matrix(i,j)=matrix(i,j)+matrixInt_re(i,j,k)*factor(k)
enddo
enddo
enddo
call ExtendBySymmetry(Gmat)
end
Further optimization:
Rewriting the code like this it becomes apparent that the inner loop over k is nothing more than a dot product. This could potentially be sped up by the compiler. The main loop would then look like:
do i=1,indCompMax
do j=i,nsit-i+1
matrix(i,j)=matrix(i,j) + &
dot_product( matrixInt_re(i,j,:maxPoles), factor(:maxPoles) )
enddo
enddo
As chw21 noted, Fortran uses a column major memory layout and you are accessing it in a row major fashion. This potentially loses you a lot of memory. You should consider transposing your arrays in the main program or at least switch the loops over i and j. I would prefer the first option, as the inner dot product would then be performed on contiguous memory chunks.
Try to see whether you can swap the loops around. Since Fortran stores the arrays in the order
(1, 1), (2, 1), (3, 1), ..., (n, 1), (1, 2), (2, 2), ...
Memory access is far faster if you loop along that dimension.
I am trying to improve one of the code I am using for numerical simulations. One of the computation step requires to compute several large arrays, whose computation is complex and costly. What is done now is that each array is computed by a specific MPI-process, and then broadcasted to the other ones. The subroutine doing that is called very often during a run of the program, so it needs to be as fast as possible.
However, I suspect that the five successive MPI_BCAST are deleterious for the program performances... I did some tests using a non-blocking BCAST (MPI_IBCAST) and I saw an improvement of the performances.
Unfortunately, I cannot use it at it does not seem to be available in some MPI implementations (at least the versions installed on the clusters I'm using...).
Do you have any ideas on how to improve this situation ? Below is a simplified version of the code I'm trying to optimize...
program test
use mpi
integer, parameter :: dp = kind(0.d0)
real(dp), dimension(:), allocatable :: a, b, c, d, e
integer, dimension(5) :: kproc
integer :: myid, numprocs, ierr
integer :: i,n
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
n = 5000 ! Can be much greater
allocate(a(n), b(n), c(n), d(n), e(n))
do i=1,5
kproc(i)=mod(i-1,numprocs)
enddo
if(myid==kproc(1)) then
a = 1.0_dp ! Complex computation for a
endif
if(myid==kproc(2)) then
b = 2.0_dp ! Complex computation for b
endif
if(myid==kproc(3)) then
c = 3.0_dp ! Complex computation for c
endif
if(myid==kproc(4)) then
d = 4.0_dp ! Complex computation for d
endif
if(myid==kproc(5)) then
e = 5.0_dp ! Complex computation for e
endif
call MPI_BCAST(a,n,MPI_DOUBLE_PRECISION,kproc(1),MPI_COMM_WORLD, ierr)
call MPI_BCAST(b,n,MPI_DOUBLE_PRECISION,kproc(2),MPI_COMM_WORLD ,ierr)
call MPI_BCAST(c,n,MPI_DOUBLE_PRECISION,kproc(3),MPI_COMM_WORLD ,ierr)
call MPI_BCAST(d,n,MPI_DOUBLE_PRECISION,kproc(4),MPI_COMM_WORLD ,ierr)
call MPI_BCAST(e,n,MPI_DOUBLE_PRECISION,kproc(5),MPI_COMM_WORLD ,ierr)
d = d+e
call MPI_FINALIZE(ierr)
end program test
In this example, you can see that the computation of the five arrays a, b, c, d and e is splitted between the MPI processes. Notice also that d and e are in fact two parts of the same array : at the end, what matters is only the value of d = d+e.
I am writing a Fortran program which involves a very large number of exponential function calls. I found that when the argument of exp() function is a variable, the calculation speed is more than 20 times slower than using constant value as the function argument. Eg, in the following two sample programs, program A is much slower than program B.
program A
real a,b
integer i
a=1.234
do i=1,100000000
b=exp(a)
end do
stop
end program A
=====================
program B
integer i
real b
do i=1,100000000
b=exp(1.234)
end do
stop
end program B
When using variable as the exp() function argument is unavoidable, how can I improve the efficiency of doing exp() calculations?
Some compilers can evaluate intrinsic functions applied to constants at compile time. Thus there is no run time cost to evaluating the intrinsic function in this case. Obviously this can't be done for true variables since the values won't be known until runtime.
See if you can get some optimisation report out of the compiler...
Example for Intel:
program A
real a,b
integer i
a=1.234
!DIR$ SIMD
do i=1,100000000
b=exp(a)
end do
stop
end program A
Example using OpenMP:
program A2
USE OMP_LIB
real a,b
integer i
a=1.234
!DIR$ SIMD
do i=1,100000000
b=exp(a)
end do
stop
end program A2
And of course in this trivial case...
program B2
real a,c
real, DIMENSION(100000000) ::b
a=1.234
c=exp(a)
b=c
! which is mathematically the same as
!b(1:100000000) = c
! or
!b(:) = c
stop
end program B2
I usually put these types of functions into a library and then compile that using !DIR# or !$OMP and get it tuned up, independent of the main program's optimisation level.
MODULE MyFuncs
PRIVATE
PUBLIC, B2
CONTAINS
PURE SUBROUTINE B2(a,n,b)
IMPLICIT NONE
real , INTENT(IN ) :: a
INTEGER , INTENT(IN ) :: n
real, DIMENSION(n), INTENT( OUT) :: b
c=exp(a)
!DIR$ SIMD
b=c
RETURN
END SUBROUTINE myB2
END MODULE MyFuncs
program A
IMPLICIT NONE
USE myFuncs
INTEGER :: n=100000000
real :: a
real, DIMENSION(n) :: b
a=1.234
CALL MyB2(a, n, b)
end program A