I am using ZMQ to allow multiple clients to connect to a server and send a video stream of data using Pull/Push pattern. Now issue is the client can disconnect from the server. I need to ask is there a reliability concern, what happens if the data being sent to the server is dropped. Will the client will start sending video streams from the start or from where it was dropped in ZeroMQ. Does using Pull/Push pattern has buffers to accommodate this problem.
Usually ZeroMQ sockets will automatically reconnect when a connection is lost due to a temporarily network error.
For a PUSH socket the documentation states:
When a PUSH socket enters the mute state due to having reached the high water mark for all downstream nodes, or if there are no downstream nodes at all, then any send operations on the socket will block until the mute state ends or at least one downstream node becomes available for sending; messages are not discarded.
So a PUSH socket will buffer data and eventually block if it is not connected to a downstream PULL socket.
You should be able to test this by temporarily disabling or unplugging the network.
Related
I'm building a distributed system and I would like asynchronous send and recv from both sides with blocking after high water mark.
PUSH/PULL sockets works great, but I wasn't able to bind a PUSH socket. Meaning I can't have a client-PUSH to server-PULL and a server-PUSH to client-PULL, if the client is behind a firewall, since the server can't connect to the client.
In the book, the following is written, but I can't find an example of it.
"REQ to DEALER: you could in theory do this, but it would break if you added a second REQ because DEALER has no way of sending a reply to the original peer. Thus the REQ socket would get confused, and/or return messages meant for another client." http://zguide.zeromq.org/php:chapter3
I only need a one-to-one connection, so this would in theory work for me.
My question is, what is the best practice to obtain asynchronous send and recv with ZeroMQ without dropping packets?
Most ZeroMQ sockets can both bind (listen on a specific port, acting as a server) and connect (acting as a client). It is usually not related to the data flow. See the guide for more info.
Try to bind on your servers PUSH socket and connect from your clients PULL socket.
I'm new to ZeroMQ and trying to figure out a design issue. My scenario is that I have one or more clients sending requests to a single server. The server will process the requests, do some stuff, and send a reply to the client. There are two conditions:
The replies must go to the clients that sent the request.
If the client disconnects, the server should queue messages for a period of time so that if the client reconnects, it can receive the messages it missed.
I am having a difficult time figuring out the simplest way to implement this.
Things I've tried:
PUB/SUB - I could tag replies with topics to ensure only the subscribers that sent their request (with their topic as their identifier) would receive the correct reply. This takes care of the routing issue, but since the publisher is unaware of the subscribers, it knows nothing about clients that disconnect.
PUSH/PULL - Seems to be able to handle the message queuing issue, but looks like it won't support my plan of having messages sent to specific clients (based on their ID, for example).
ROUTER/DEALER - Design seemed like the solution to both, but all of the examples seem pretty complex.
My thinking right now is continuing with PUB/SUB, try to implement some sort of heartbeat on the client end (allowing the server to detect the client's presence), and when the client no longer sends a heartbeat, it will stop sending messages tagged with its topic. But that seems sub-optimal and would also involve another socket.
Are there any ideas or suggestions on any other ways I might go about implementing this? Any info would be greatly appreciated. I'm working in Python but any language is fine.
To prepare the best proposition for your solution, more data about your application requirements. I have made a little research about your conditions and connnect it with my experience about ZMQ, here I present two possibilities:
1) PUSH/PULL pattern in two direction, bigger impact on scalability, but messages from server will be cached.
Server has one PULL socket to register each client and get all messages from clients. Each message should have client ID to for server knowledge where send response.
For each client - server create PUSH socket to send responses. Socket configuration was sent in register message. You can use also REQ/REP pattern for register clients (assign socket number).
Each client has own PULL socket, which configuration was sent to server in register message.
It means that server with three clients required to (example port numbers in []):
server: 1 x PULL[5555] socket, 3 x PUSH[5560,5561,5562] sockets (+ optional 1 X REQ[5556] socket for registrations, but I think it depends how you prepare client identity)
client: 1 x PUSH[5555] socket, 1 x PULL[5560|5561|5562] (one per client) (+ optional 1 X REP[5556])
You have to connect server to multiple client sockets to send responses but if client disconnects, messages will not lost. Client will get their own messages when it reconnect to their PULL socket. The disadvantage is requirements of creating few PUSH sockets on server side (number of clients).
2) PUB/SUB + PUSH/PULL or REQ/REP, static cocket configuration on server side (only 2), but server has to prepare some mechanism for retransmit or cache messages.
Server create PUB socket and PULL or REQ. Client register it identity by PULL or REQ socket. server will publish all messages to client with this identity as filter. Server use monitor() function on PUB socket to count number of connected and disconnected clients (actions: 'accept' and 'disconnect'). After 'disconnect' action server publish message to all clients to register again. For clients which not re-register, server stop publish messages.
Client create SUB socket and PUSH or REQ to register and send requests.
This solution requires maybe some cache on server side. Client could confirm each message after get it from SUB socket. It is more complicated and have to be connected with your requirement. If you just would like to know that client lost message. Client could send timestamps of last message received from server during registration. If you need guarantee that clients get all messages, you need some cache implementation. Maybe other process which subscribe all messages and delete each confirmed by client.
In this solution server with three clients required to (example port numbers in []):
server: 1 x PUB[5555] socket, 1 x REP or PULL[5560] socket + monitoring PUB socket
client: 1 x SUB[5555] socket and own identity for filter, 1 x REQ or PUSH[5560] socket
About monitoring you could read here: https://github.com/JustinTulloss/zeromq.node#monitoring (NodeJS implementation, but Python will be similar)
I think about other patterns, but I am not sure that ROUTER/DEALER or REQ/REP will cover your requirements. You should read more about patterns, because each of it is better for some solutions. Look here:
official ZMQ guide (a lot of examples and pictures)
easy ROUTER/DEALER example: http://blog.scottlogic.com/2015/03/20/ZeroMQ-Quick-Intro.html
I have a websocket server. It accepts thousands of connections from clients. Read data from and write data to clients. It will work normally for weeks. But something wrong will happen occasionally, maybe once two weeks. In a very short time, the new clients will establish connections to server and send a protocol immediately. The server side websocket.onOpen() will be invoked, but it fails to read the protocol data from client. And later the client may close the connection. But on the server side, the connections will keep in the state of CLOSE_WAIT, but never successfully closed. Via netstat I can see that the CLOSE_WAIT connections' read buffer is not empty and keep that value(never be read). So I guess that the server's failing to read data and the close FIN package leads to the connection to keep in CLOSE_WAIT state.
So I want to know under what circumstance may the websocket fail to read data from reading buffers.
I have a client/server setup in which clients send a single request message to the server and gets a bunch of data messages back.
The server is implemented using a ROUTER socket and the clients using a DEALER. The communication is asynchronous.
The clients are typically iPads/iPhones and they connect over wifi so the connection is not 100% reliable.
The issue I’m concern about is if the client connects to the server and sends a request for data but before the response messages are delivered back the communication goes down (e.g. out of wifi coverage).
In this case the messages will be queued up on the server side waiting for the client to reconnect. That is fine for a short time but eventually I would like to drop the messages and the connection to release resources.
By checking activity/timeouts it would be possible in the server and the client applications to identify that the connection is gone. The client can shutdown the socket and in this way free resources but how can it be done in the server?
Per the ZMQ FAQ:
How can I flush all messages that are in the ZeroMQ socket queue?
There is no explicit command for flushing a specific message or all messages from the message queue. You may set ZMQ_LINGER to 0 and close the socket to discard any unsent messages.
Per this mailing list discussion from 2013:
There is no option to drop old messages [from an outgoing message queue].
Your best bet is to implement heartbeating and, when one client stops responding without explicitly disconnecting, restart your ROUTER socket. Messy, I know, this is really something that should have a companion option to HWM. Pieter Hintjens is clearly on board (he created ZMQ) - but that was from 2011, so it looks like nothing ever came of it.
This is a bit late but setting tcp keepalive to a reasonable value will cause dead sockets to close after the timeouts have expired.
Heartbeating is necessary for either side to determine the other side is still responding.
The only thing I'm not sure about is how to go about heartbeating many thousands of clients without spending all available cpu just on dealing with the heartbeats.
I have an EventMachine server sending TCP data down to a Mac client (via GCDAsyncSocket). It always works flawlessly for a while, but inevitably the server suddenly stops sending data on a connection-by-connection basis. The connection is still maintained, and the server still receives data from the client, but it doesn't go the other way.
When this happens, I've discovered via connection#get_outbound_data_size that the connection send buffer is filling up infinitely (via #send_data) and not being sent to the client.
Are there specific (and hopefully fixable) reasons why this might occur? The reactor keeps humming along, and other active connections to the server continue working fine (though they sometimes fall into buffer hell as well).
I see one reason at least: when the remote client no longer read data from its side of the TCP connection (with a recv() call or whatever).
Then, the scenario is: the receiving TCP buffer on the client side becomes full. And the OS can no longer accepts TCP pacquets from its peer, since it cannot store them queue them. As a consequence, the sending TCP buffer on the server side becomes full too as your application continue to send paquets on the socket! Soon your server is no longer able to write into the socket since the send() system call will :
blocks undefinitively. (waiting for buffer to empty enough for the new paquet)
ot returns with an EWOULDBLOCK error. (if you configured your socket as a non-blocking one)
I usually met that kind of use case in TEST environment when I put a breakpoint in my code on the client side.
There was a patch was applied to GCDAsyncSocket on March 23 that prevents the reads from stopping. Did this patch solve your problem?