Documents in the Elasticsearch are indexed as such
Document 1
{
"task_completed": 10
"tagged_object": [
{
"category": "cat",
"count": 10
},
{
"category": "cars",
"count": 20
}
]
}
Document 2
{
"task_completed": 50
"tagged_object": [
{
"category": "cars",
"count": 100
},
{
"category": "dog",
"count": 5
}
]
}
As you can see that the value of the category key is dynamic in nature. I want to perform a similar aggregation like in SQL with the group by category and return the sum of the count of each category.
In the above example, the aggregation should return
cat: 10,
cars: 120 and
dog: 5
Wanted to know how to write this aggregation query in Elasticsearch if it is possible. Thanks in advance.
You can achieve your required result, using nested, terms, and sum aggregation.
Adding a working example with index mapping, search query and search result
Index Mapping:
{
"mappings": {
"properties": {
"tagged_object": {
"type": "nested"
}
}
}
}
Search Query:
{
"size": 0,
"aggs": {
"resellers": {
"nested": {
"path": "tagged_object"
},
"aggs": {
"books": {
"terms": {
"field": "tagged_object.category.keyword"
},
"aggs":{
"sum_of_count":{
"sum":{
"field":"tagged_object.count"
}
}
}
}
}
}
}
}
Search Result:
"aggregations": {
"resellers": {
"doc_count": 4,
"books": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "cars",
"doc_count": 2,
"sum_of_count": {
"value": 120.0
}
},
{
"key": "cat",
"doc_count": 1,
"sum_of_count": {
"value": 10.0
}
},
{
"key": "dog",
"doc_count": 1,
"sum_of_count": {
"value": 5.0
}
}
]
}
}
}
Related
I need to split the found messages into intervals. Can this be done with Elasticsearch?
For example. There are 10 messages, you need to divide them into 3 intervals. It should look like this...
[0,1,2,3,4,5,6,7,8,9] => {[0,1,2], [3,4,5,6], [7,8,9]}.
I'm only interested in the beginning of the intervals. For example: {[count - 3, min 0], [count - 4, min 3], [count - 3, min - 7]}
Example.
PUT /test_index
{
"mappings": {
"properties": {
"id": {
"type": "long"
}
}
}
}
POST /test_index/_doc/0
{
"id": 0
}
POST /test_index/_doc/1
{
"id": 1
}
POST /test_index/_doc/2
{
"id": 2
}
POST /test_index/_doc/3
{
"id": 3
}
POST /test_index/_doc/4
{
"id": 4
}
POST /test_index/_doc/5
{
"id": 5
}
POST /test_index/_doc/6
{
"id": 6
}
POST /test_index/_doc/7
{
"id": 7
}
POST /test_index/_doc/8
{
"id": 8
}
POST /test_index/_doc/9
{
"id": 9
}
It is necessary to divide the values into 3 intervals with the same number of elements in each interval:
{
...
"aggregations": {
"result": {
"buckets": [
{
"min": 0.0,
"doc_count": 3
},
{
"min": 3.0,
"doc_count": 4
},
{
"min": 7.0,
"doc_count": 3
}
]
}
}
}
There is a similar function: "variable width histogram":
GET /test_index/_search?size=0
{
"aggs": {
"result": {
"variable_width_histogram": {
"field": "id",
"buckets": 3
}
}
},
"query": {
"match_all": {}
}
}
But "variable width histogram" separates documents by id value, not by the number of elements in the bucket
Assuming your mapping is like:
{
"some_numeric_field" : {"type" : "integer"}
}
Then you can build histograms out of it with fixed interval sizes:
POST /my_index/_search?size=0
{
"aggs": {
"some_numeric_field": {
"histogram": {
"field": "some_numeric_field",
"interval": 7
}
}
}
}
Results:
{
...
"aggregations": {
"prices": {
"buckets": [
{
"key": 0.0,
"doc_count": 7
},
{
"key": 7.0,
"doc_count": 7
},
{
"key": 14.0,
"doc_count": 7
}
]
}
}
}
To get the individual values inside each bucket, just add a sub-aggregation, maybe "top_hits" or anything else like a "terms"
aggregation.
Without knowing more about your data, I really cannot help further.
I have the below mapping in ElasticSearch
{
"properties":{
"Costs":{
"type":"nested",
"properties":{
"price":{
"type":"integer"
}
}
}
}
}
So every document has an Array field Costs, which contains many elements and each element has price in it. I want to find the min and max price with the condition being - that from each array the element with the minimum price should be considered. So it is basically min/max among the minimum value of each array.
Lets say I have 2 documents with the Costs field as
Costs: [
{
"price": 100,
},
{
"price": 200,
}
]
and
Costs: [
{
"price": 300,
},
{
"price": 400,
}
]
So I need to find the stats
This is the query I am currently using
{
"costs_stats":{
"nested":{
"path":"Costs"
},
"aggs":{
"price_stats_new":{
"stats":{
"field":"Costs.price"
}
}
}
}
}
And it gives me this:
"min" : 100,
"max" : 400
But I need to find stats after taking minimum elements of each array for consideration.
So this is what i need:
"min" : 100,
"max" : 300
Like we have a "mode" option in sort, is there something similar in stats aggregation also, or any other way of achieving this, maybe using a script or something. Please suggest. I am really stuck here.
Let me know if anything is required
Update 1:
Query for finding min/max among minimums
{
"_source":false,
"timeout":"5s",
"from":0,
"size":0,
"aggs":{
"price_1":{
"terms":{
"field":"id"
},
"aggs":{
"price_2":{
"nested":{
"path":"Costs"
},
"aggs":{
"filtered":{
"aggs":{
"price_3":{
"min":{
"field":"Costs.price"
}
}
},
"filter":{
"bool":{
"filter":{
"range":{
"Costs.price":{
"gte":100
}
}
}
}
}
}
}
}
}
},
"minValue":{
"min_bucket":{
"buckets_path":"price_1>price_2>filtered>price_3"
}
}
}
}
Only few buckets are coming and hence the min/max is coming among those, which is not correct. Is there any size limit.
One way to achieve your use case is to add one more field id, in each document. With the help of id field terms aggregation can be performed, and so buckets will be dynamically built - one per unique value.
Then, we can apply min aggregation, which will return the minimum value among numeric values extracted from the aggregated documents.
Adding a working example with index data, mapping, search query, and search result
Index Mapping:
{
"mappings": {
"properties": {
"Costs": {
"type": "nested"
}
}
}
}
Index Data:
{
"id":1,
"Costs": [
{
"price": 100
},
{
"price": 200
}
]
}
{
"id":2,
"Costs": [
{
"price": 300
},
{
"price": 400
}
]
}
Search Query:
{
"size": 0,
"aggs": {
"id_terms": {
"terms": {
"field": "id",
"size": 15 <-- note this
},
"aggs": {
"nested_entries": {
"nested": {
"path": "Costs"
},
"aggs": {
"min_position": {
"min": {
"field": "Costs.price"
}
}
}
}
}
}
}
}
Search Result:
"aggregations": {
"id_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1,
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 100.0
}
}
},
{
"key": 2,
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 300.0
}
}
}
]
}
Using stats aggregation also, it can be achieved (if you add one more field id that uniquely identifies your document)
{
"size": 0,
"aggs": {
"id_terms": {
"terms": {
"field": "id",
"size": 15 <-- note this
},
"aggs": {
"costs_stats": {
"nested": {
"path": "Costs"
},
"aggs": {
"price_stats_new": {
"stats": {
"field": "Costs.price"
}
}
}
}
}
}
}
}
Update 1:
To find the maximum value among those minimums (as seen in the above query), you can use max bucket aggregation
{
"size": 0,
"aggs": {
"id_terms": {
"terms": {
"field": "id",
"size": 15 <-- note this
},
"aggs": {
"nested_entries": {
"nested": {
"path": "Costs"
},
"aggs": {
"min_position": {
"min": {
"field": "Costs.price"
}
}
}
}
}
},
"maxValue": {
"max_bucket": {
"buckets_path": "id_terms>nested_entries>min_position"
}
}
}
}
Search Result:
"aggregations": {
"id_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1,
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 100.0
}
}
},
{
"key": 2,
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 300.0
}
}
}
]
},
"maxValue": {
"value": 300.0,
"keys": [
"2"
]
}
}
I'm looking to do a Max aggregation on a value of the property under my document, the property is a list of complex object (key and value). Here's my data:
[{
"id" : "1",
"listItems" :
[
{
"key" : "li1",
"value" : 100
},
{
"key" : "li2",
"value" : 5000
}
]
},
{
"id" : "2",
"listItems" :
[
{
"key" : "li3",
"value" : 200
},
{
"key" : "li2",
"value" : 2000
}
]
}]
When I do the Nested Max Aggregation on "listItems.value", I'm expecting the max value returned to be 200 (and not 5000), reason being I want the logic to first figure the MIN value under listItems for each document, then doing the Max Aggregation on that. Is it possible to do something like this?
Thanks.
The search query performs the following aggregation :
Terms aggregation on the id field
Min aggregation on listItems.value
Max bucket aggregation that is a sibling pipeline aggregation which identifies the bucket(s) with the maximum value of a specified metric in a sibling aggregation and outputs both the value and the key(s) of the bucket(s).
Please refer to nested aggregation, to get a detailed explanation on it.
Adding a working example with index data, index mapping, search query, and search result.
Index Mapping:
{
"mappings": {
"properties": {
"listItems": {
"type": "nested"
},
"id":{
"type":"text",
"fielddata":"true"
}
}
}
}
Index Data:
{
"id" : "1",
"listItems" :
[
{
"key" : "li1",
"value" : 100
},
{
"key" : "li2",
"value" : 5000
}
]
}
{
"id" : "2",
"listItems" :
[
{
"key" : "li3",
"value" : 200
},
{
"key" : "li2",
"value" : 2000
}
]
}
Search Query:
{
"size": 0,
"aggs": {
"id_terms": {
"terms": {
"field": "id"
},
"aggs": {
"nested_entries": {
"nested": {
"path": "listItems"
},
"aggs": {
"min_position": {
"min": {
"field": "listItems.value"
}
}
}
}
}
},
"maxValue": {
"max_bucket": {
"buckets_path": "id_terms>nested_entries>min_position"
}
}
}
}
Search Result:
"aggregations": {
"id_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "1",
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 100.0
}
}
},
{
"key": "2",
"doc_count": 1,
"nested_entries": {
"doc_count": 2,
"min_position": {
"value": 200.0
}
}
}
]
},
"maxValue": {
"value": 200.0,
"keys": [
"2"
]
}
}
Initial post was mentioning nested aggregation, thus i was sure question is about nested documents. Since i've come to solution before seeing another answer, i'm keeping the whole thing for history, but actually it differs only in adding nested aggregation.
The whole process can be explained like that:
Bucket each document into single bucket.
Use nested aggregation to be able to aggregate on nested documents.
Use min aggregation to find minimum value within all document nested documents, and by that, for document itself.
Finally, use another aggregation to calculate maximum value among results of previous aggregation.
Given this setup:
// PUT /index
{
"mappings": {
"properties": {
"children": {
"type": "nested",
"properties": {
"value": {
"type": "integer"
}
}
}
}
}
}
// POST /index/_doc
{
"children": [
{ "value": 12 },
{ "value": 45 }
]
}
// POST /index/_doc
{
"children": [
{ "value": 7 },
{ "value": 35 }
]
}
I can use those aggregations in request to get required value:
{
"size": 0,
"aggs": {
"document": {
"terms": {"field": "_id"},
"aggs": {
"children": {
"nested": {
"path": "children"
},
"aggs": {
"minimum": {
"min": {
"field": "children.value"
}
}
}
}
}
},
"result": {
"max_bucket": {
"buckets_path": "document>children>minimum"
}
}
}
}
{
"aggregations": {
"document": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "O4QxyHQBK5VO9CW5xJGl",
"doc_count": 1,
"children": {
"doc_count": 2,
"minimum": {
"value": 7.0
}
}
},
{
"key": "OoQxyHQBK5VO9CW5kpEc",
"doc_count": 1,
"children": {
"doc_count": 2,
"minimum": {
"value": 12.0
}
}
}
]
},
"result": {
"value": 12.0,
"keys": [
"OoQxyHQBK5VO9CW5kpEc"
]
}
}
}
There also should be a workaround using script for calculating max - all that you will need to do is just find and return smallest value in document in such script.
I have a list of products (deal entities) and I'm attempting to create a bucket aggregation by categories, ordered by the sum of available_stock.
This all works fine, but I want to exclude such categories from the resulting aggregation that don't have level set to 1 (In other words, I only want to keep aggregations on category where level IS 1).
I am aware that elasticsearch provides "exclude" and "include" parameters, but these only work on the same field I'm aggregating on (deal.category.id in this case)
This is my sample deal document:
{
"_source": {
"id": 392745,
"category": [
{
"id": 17575,
"level": 2
},
{
"id": 17574,
"level": 1
},
{
"id": 17572,
"level": 0
}
],
"stats": {
"available_stock": 500
}
}
}
And this would be the query:
{
"query": {
"filtered": {
"query": {
"match_all": {}
},
}
},
"aggs": {
"mainAggregation": {
"terms": {
"field": "deal.category.id",
"order": {
"available_stock": "desc"
},
"size": 3
},
"aggs": {
"available_stock": {
"sum": {
"field": "deal.stats.available_stock"
}
}
}
}
},
"size": 0
}
And my resulting aggregation, sadly including category 17572 with level 0.
{
"aggregations": {
"mainAggregation": {
"buckets": [
{
"key": 17572,
"doc_count": 30,
"available_stock": {
"value": 24000
}
},
{
"key": 17598,
"doc_count": 10,
"available_stock": {
"value": 12000
}
},
{
"key": 17602,
"doc_count": 8,
"available_stock": {
"value": 6000
}
}
]
}
}
}
P.S.: Currently on ElasticSearch 1.6
Update 1: Still stuck on the problem after various experiments with various combimation of subaggregations.
I have found this impossible to solve and decided to go with two separate queries.
Friends,
I am doing some analysis to find unique pairs from 100s of millions of documents. The mock example is as shown below:
doc field1 field2
AAA : BBB
AAA : CCC
PPP : QQQ
PPP : QQQ
XXX : YYY
XXX : YYY
MMM : NNN
90% of the document contains an unique pair as shown above in doc 3, 4, 5, 6 and 7 which I am not interested on my aggregation result. I am interested to aggregate doc 1 and 2.
Terms Aggregation Query:
"aggs": {
"f1": {
"terms": {
"field": "FIELD1",
"min_doc_count": 2
},
"aggs": {
"f2": {
"terms": {
"field": "FIELD2"
}
}
}
}
}
Term Aggregation Result
"aggregations": {
"f1": {
"buckets": [
{
"key": "PPP",
"doc_count": 2,
"f2": {
"buckets": [
{
"key": "QQQ",
"doc_count": 2
}
]
}
},
{
"key": "XXX",
"doc_count": 2,
"f2": {
"buckets": [
{
"key": "YYY",
"doc_count": 2
}
]
}
},
{
"key": "AAA",
"doc_count": 2,
"f2": {
"buckets": [
{
"key": "BBB",
"doc_count": 1
},
{
"key": "CCC",
"doc_count": 1
}
]
}
}
]
}
}
I am interested only on key AAA to be in the aggregation result. What is the best way to filter the aggregation result containing distinct pairs?
I tried with cardinality aggregation which result unque value count. However I am not able to filter out what I am not interested from the aggregation results.
Cardinality Aggregation Query
"aggs": {
"f1": {
"terms": {
"field": "FIELD1",
"min_doc_count": 2
},
"aggs": {
"f2": {
"cardinality": {
"field": "FIELD2"
}
}
}
}
}
Cardinality Aggregation Result
"aggregations": {
"f1": {
"buckets": [
{
"key": "PPP",
"doc_count": 2,
"f2": {
"value" : 1
}
},
{
"key": "XXX",
"doc_count": 2,
"f2": {
"value" : 1
}
},
{
"key": "AAA",
"doc_count": 2,
"f2": {
"value" : 2
}
}
]
}
}
Atleast if I could sort by cardinal value, that would be help me to find some workarounds. Please help me in this regard.
P.S: Writing a spark/mapreduce program to post process/filter the aggregation result is not expected solution for this issue.
I suggest to use filter query along with aggregations, since you are only interested in field1=AAA.
I have a similar example here.
For example, I have an index of all patients in my hospital. I store their drug use in a nested object DRUG. Each patient could take different drugs, and each could take a single drug for multiple times.
Now if I wanted to find the number of patients who took aspirin at least once, the query could be:
{
"size": 0,
"_source": false,
"query": {
"filtered": {
"query": {
"match_all": {}
},
"filter": {
"nested": {
"path": "DRUG",
"filter": {
"bool": {
"must": [{ "term": { "DRUG.NAME": "aspirin" } }]
}}}}}},
"aggs": {
"DRUG_FACETS": {
"nested": {
"path": "DRUG"
},
"aggs": {
"DRUG_NAME_FACETS": {
"terms": { "field": "DRUG.NAME", "size": 0 },
"aggs": {
"DISTINCT": { "cardinality": { "field": "DRUG.PATIENT" } }
}
}}}}
}
Sample result:
{
"took": 6,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 6,
"max_score": 0,
"hits": []
},
"aggregations": {
"DRUG_FACETS": {
"doc_count": 11,
"DRUG_NAME_FACETS": {
"buckets": [
{
"key": "aspirin",
"doc_count": 6,
"DISTINCT": {
"value": 6
}
},
{
"key": "vitamin-b",
"doc_count": 3,
"DISTINCT": {
"value": 2
}
},
{
"key": "vitamin-c",
"doc_count": 2,
"DISTINCT": {
"value": 2
}
}
]
}
}
}
}
The first one in the buckets would be aspirin. But you can see other 2 patients had also taken vitamin-b when they took aspirin.
If you change the field value of DRUG.NAME to another drug name for example "vitamin-b", I suppose you would get vitamin-b in the first position of the buckets.
Hopefully this is helpful to your question.
A bit late, hope it would help for others.
A simple approach is to filter only 'AAA' records in top aggregation:
{
"size": 0,
"aggregations": {
"filterAAA": {
"filter": {
"term": {
"FIELD1": "AAA"
}
},
"aggregations": {
"f1": {
"terms": {
"field": "FIELD1",
"min_doc_count": 2
},
"aggregations": {
"f2": {
"terms": {
"field": "FIELD2"
}
}
}
}
}
}
}
}