Related
I'm generating random coordinates and adding on my list, but first I need verify if that coordinate already exists. I'm trying to use member but when I was debugging I saw that isn't working:
My code is basically this:
% L is a list and Q is a count that define the number of coordinate
% X and Y are the coordinate members
% check if the coordniate already exists
% if exists, R is 0 and if not, R is 1
createCoordinates(L,Q) :-
random(1,10,X),
random(1,10,Y),
convertNumber(X,Z),
checkCoordinate([Z,Y],L,R),
(R is 0 -> print('member'), createCoordinates(L,Q); print('not member'),createCoordinates(L,Q-1).
checkCoordinate(C,L,R) :-
(member(C,L) -> R is 0; R is 1).
% transforms the number N in a letter L
convertNumber(N,L) :-
N is 1, L = 'A';
N is 2, L = 'B';
...
N is 10, L = 'J'.
%call createCoordinates
createCoordinates(L,20).
When I was debugging this was the output:
In this picture I'm in the firts interation and L is empty, so R should be 1 but always is 0, the coordinate always is part of the list.
I have the impression that the member clause is adding the coordinate at my list and does'nt make sense
First off, I would recommend breaking your problem down into smaller pieces. You should have a procedure for making a random coordinate:
random_coordinate([X,Y]) :-
random(1, 10, XN), convertNumber(XN, X),
random(1, 10, Y).
Second, your checkCoordinate/3 is converting Prolog's success/failure into an integer, which is just busy work for Prolog and not really improving life for you. memberchk/2 is completely sufficient to your task (member/2 would work too but is more powerful than necessary). The real problem here is not that member/2 didn't work, it's that you are trying to build up this list parameter on the way out, but you need it to exist on the way in to examine it.
We usually solve this kind of problem in Prolog by adding a third parameter and prepending values to the list on the way through. The base case then equates that list with the outbound list and we protect the whole thing with a lower-arity procedure. In other words, we do this:
random_coordinates(N, Coordinates) :- random_coordinates(N, [], Coordinates).
random_coordinates(0, Result, Result).
random_coordinates(N, CoordinatesSoFar, FinalResult) :- ...
Now that we have two things, memberchk/2 should work the way we need it to:
random_coordinates(N, CoordinatesSoFar, FinalResult) :-
N > 0, succ(N0, N), % count down, will need for recursive call
random_coordinate(Coord),
(memberchk(Coord, CoordinatesSoFar) ->
random_coordinates(N, CoordinatesSoFar, FinalResult)
;
random_coordinates(N0, [Coord|CoordinatesSoFar], FinalResult)
).
And this seems to do what we want:
?- random_coordinates(10, L), write(L), nl.
[[G,7],[G,3],[H,9],[H,8],[A,4],[G,1],[I,9],[H,6],[E,5],[G,8]]
?- random_coordinates(10, L), write(L), nl.
[[F,1],[I,8],[H,4],[I,1],[D,3],[I,6],[E,9],[D,1],[C,5],[F,8]]
Finally, I note you continue to use this syntax: N is 1, .... I caution you that this looks like an error to me because there is no distinction between this and N = 1, and your predicate could be stated somewhat tiresomely just with this:
convertNumber(1, 'A').
convertNumber(2, 'B').
...
My inclination would be to do it computationally with char_code/2 but this construction is actually probably better.
Another hint that you are doing something wrong is that the parameter L to createCoordinates/2 gets passed along in all cases and is not examined in any of them. In Prolog, we often have variables that appear to just be passed around meaninglessly, but they usually change positions or are used multiple times, as in random_coordinates(0, Result, Result); while nothing appears to be happening there, what's actually happening is plumbing: the built-up parameter becomes the result value. Nothing interesting is happening to the variable directly there, but it is being plumbed around. But nothing is happening at all to L in your code, except it is supposedly being checked for a new coordinate. But you're never actually appending anything to it, so there's no reason to expect that anything would wind up in L.
Edit Notice that #lambda.xy.x solves the problem in their answer by prepending the new coordinate in the head of the clause and examining the list only after the recursive call in the body, obviating the need for the second list parameter.
Edit 2 Also take a look at #lambda.xy.x's other solution as it has better time complexity as N approaches 100.
Since i had already written it, here is an alternative solution: The building block is gen_coord_notin/2 which guarantees a fresh solution C with regard to an exclusion list Excl.
gen_coord_notin(C, Excl) :-
random(1,10,X),
random(1,10,Y),
( memberchk(X-Y, Excl) ->
gen_coord_notin(C, Excl)
;
C = X-Y
).
The trick is that we only unify C with the new result, if it is fresh.
Then we only have to fold the generations into N iterations:
gen_coords([], 0).
gen_coords([X|Xs], N) :-
N > 0,
M is N - 1,
gen_coords(Xs, M),
gen_coord_notin(X, Xs).
Remark 1: since coordinates are always 2-tuples, a list representation invites unwanted errors (e.g. writing [X|Y] instead of [X,Y]). Traditionally, an infix operator like - is used to seperate tuples, but it's not any different than using coord(X,Y).
Remark 2: this predicate is inherently non-logical (i.e. calling gen_coords(X, 20) twice will result in different substitutions for X). You might use the meta-level predicates var/1, nonvar/1, ground/1, integer, etc. to guard against non-sensical calls like gen_coord(1-2, [1-1]).
Remark 3: it is also important that the conditional does not have multiple solutions (compare member(X,[A,B]) and memberchk(X,[A,B])). In general, this can be achieved by calling once/1 but there is a specialized predicate memberchk/2 which I used here.
I just realized that the performance of my other solutions is very bad for N close to 100. The reason is that with diminishing possible coordinates, the generate and test approach will take longer and longer. There's an alternative solution which generates all coordinates and picks N random ones:
all_pairs(Ls) :-
findall(X-Y, (between(1,10,X), between(1,10,Y)), Ls).
remove_index(X,[X|Xs],Xs,0).
remove_index(I,[X|Xs],[X|Rest],N) :-
N > 0,
M is N - 1,
remove_index(I,Xs,Rest,M).
n_from_pool(_Pool, [], 0).
n_from_pool(Pool, [C|Cs], N) :-
N > 0,
M is N - 1,
length(Pool, L),
random(0,L,R),
remove_index(C,Pool,NPool,R),
n_from_pool(NPool, Cs, M).
gen_coords2(Xs, N) :-
all_pairs(Pool),
n_from_pool(Pool, Xs, N).
Now the query
?- gen_coords2(Xs, 100).
Xs = [4-6, 5-6, 5-8, 9-6, 3-1, 1-3, 9-4, 6-1, ... - ...|...] ;
false.
succeeds as expected. The error message
?- gen_coords2(Xs, 101).
ERROR: random/1: Domain error: not_less_than_one' expected, found0'
when we try to generate more distinct elements than possible is not nice, but better than non-termination.
I'm new to Prolog and I'm trying to write fully working magic square program, but to say the truth I don't really know how to do, I have started but I feel that I'm doing it wrong. I'm sharing my code and I hope someone will help me, now when numbers are good I get true, but when they are not I get like out of stack error... (here is only checking rows and columns I know about obliquely check)
thanks for your attention!
:- use_module(library(clpfd)).
:- use_module(library(lists)).
magicSq(List, N) :-
Number is N * N,
belongs(Number ,List), % check if numbers are correct.
all_different(List), % check if numbers not occur.
Suma is N*(N*N + 1)/2,
checkC(List,N,N,Suma), % check column
checkR(List,1,N,Suma). % check row
belongs(0, _).
belongs(N, List) :- member(N,List) , Index is N - 1 , belongs(Index, List).
consecutiveSum(_, 0 , _,0).
consecutiveSum(List, HowMuch , From,Sum):-
Index is HowMuch - 1,
From1 is From +1,
nth1(From, List,Element),
consecutiveSum(List,Index,From1,Z),
Sum is Z + Element,!.
sumObliCol(0,_, [], _,_). % sums by columns or obliquely
sumObliCol(X,Number, [H|T], Ind, Residue) :-
Index is Ind + 1,
Y is mod(Index,Number),
Y =:= Residue,
sumObliCol(Z,Number, T, Index,Residue),
X is Z + H, !.
sumObliCol(X,Number, [_|T], Ind,Residue) :-
Index is Ind + 1,
sumObliCol(X,Number, T, Index,Residue).
checkC(_,0,_,_). % check column
checkC(List,N, Number,Answ):-
N1 is N-1,
checkC(List,N1, Number,Answ),
sumObliCol(Ats,Number,List,0,N1),Ats is Answ,!.
checkR(_,N,Number,_):- N>(Number*Number). % check row
checkR(List,N,Number,Answ):-
consecutiveSum(List,Number,N,Sum), Sum is Answ,
N1 is N + Number,
checkR(List,N1, Number,Answ),!.
In programming one often assumes that
everything is deeply intertwingled ... since the cross-connections among the myriad topics of this world/program simply cannot be divided up neatly.1
But in Prolog, sometimes, we can divide things up much more neatly. In particular, if you concentrate on a single property like non-termination. So let's consider magic squares of size one — very magic indeed! Like so using a failure-slice:
?- magicSq(Xs,1), false.
magicSq(List, N) :-
Number is N * N,
belongs(Number ,List), false,
all_different(List),
Suma is N*(N*N + 1)/2,
checkC(List,N,N,Suma),
checkR(List,1,N,Suma).
belongs(0, _) :- false.
belongs(N1, List) :-
member(N1,List), false,
N2 is N1 - 1,
belongs(N2, List).
That's all you need to understand! Evidently, the List is unconstrained and thus the goal member(N1, List) cannot terminate. That's easy to fix, adding a goal length(List, Number). And still, the program does not terminate but in a different area:
?- magicSq(Xs,1), false.
magicSq(List, N) :-
Number is N * N,
length(List, Number),
belongs(Number ,List), false,
all_different(List),
Suma is N*(N*N + 1)/2,
checkC(List,N,N,Suma),
checkR(List,1,N,Suma).
belongs(0, _) :- false.
belongs(N1, List) :-
member(N1,List),
N2 is N1 - 1,
belongs(N2, List), false.
Now this does not terminate, for N1 may be negative, too. We need to improve that adding N1 > 0.
Now, considering the program with a false in front of all_different/1, I get:
?- time(magicSq(List, 3)).
% 8,571,007 inferences
That looks like an awful lot of inferences! In fact, what you are doing is to enumerate all possible configurations first. Thus, you do not use the powers of constraint programming. Please go through tutorials on this. Start here.
However, the problems do not stop here! There is much more to it, but the remaining program is very difficult to understand, for you are using the ! in completely unrelated places.
I am trying to solve the knapsack problem in prolog. Following is my implementation.
% 'ks' is compound term which has 4 argumets
% 1 - List of items to be chosen from.
% 2 - Maximum weight a knapsack can carry.
% 3 - Selected items which sum of weights is less than or equal to knapsack capacity.
% 4 - The gain after choosing the selected item.
% base conditions where input list contains only one items and
% it is either selected or excluded.
ks([item(W1, V1)], W, [item(W1, V1)], V1):- W1 =< W.
ks([item(W1, _)], W, [], 0):- W1 > W.
% An item from the input list is chosen in the knapsack.
% In that case, we recurse with smaller list with reduced weight constraint.
ks(ItemList, MaxWeight, SelectItems, Gain) :-
append(Prefix, [item(W1, V1)|Suffix], ItemList),
append(Prefix, Suffix, RemList),
NewWeight is MaxWeight - W1,
W1 =< MaxWeight,
append([item(W1, V1)], SelectItems1, SelectItems),
ks(RemList, NewWeight, SelectItems1, Gain1),
Gain is V1 + Gain1.
% An item from the input list is not chosen in the knapsack.
% In that case, we recurse with smaller list but with the same weight constraint.
ks(ItemList, MaxWeight, SelectItems, Gain) :-
append([P1|Prefix], [item(W1, V1)|Suffix], ItemList),
append([P1|Prefix], Suffix, RemList),
not(member(item(W1, V1), SelectItems)),
ks(RemList, MaxWeight, SelectItems, Gain).
The input to the program will be list of items as below. in term item(W, V) W is weight of the item while V is value of the item. Goal to maximize the value for the given weight constraint.
ks([item(2,3), item(3,4), item(4,5), item(5,8), item(9,10)], 20, List, Gain).
List = [item(2, 3), item(3, 4), item(4, 5), item(5, 8)],
Gain = 20 ;
While I am able to generate all the combinations of items with above program, I am not able to code to find out the maximum gain only.
Could any one please point me the right direction?
Thanks.
I think that to find reusable abstractions it's an important point of studying programming. If we have a subset_set/2 that yields on backtracking all subsets, ks/4 becomes really simple:
subset_set([], _).
subset_set([H|T], Set) :-
append(_, [H|Rest], Set),
subset_set(T, Rest).
ks(Set, Limit, Choice, Gain) :-
subset_set(Choice, Set),
aggregate((sum(W), sum(G)), member(item(W, G), Choice), (TotWeight, Gain)),
TotWeight =< Limit.
and then
ks_max(Items, Limit, Sel, WMax) :-
aggregate(max(W,I), ks(Items,Limit,I,W), max(WMax,Sel)).
despite its simplicity, subset_set/2 is not really easy to code, and library available alternatives (subset/2, ord_subset/2) don't enumerate, but only check for the relation.
There are at least two things you can do, depending on how you want to approach this.
You could simply collect all solutions and find the maximum. Something along the lines of:
?- Items = [item(2,3), item(3,4), item(4,5), item(5,8), item(9,10)],
findall(Gain-List, ks(Items, 20, List, Gain), Solutions),
sort(Solutions, Sorted),
reverse(Sorted, [MaxGain-MaxList|_]).
% ...
MaxGain = 26,
MaxList = [item(9, 10), item(5, 8), item(4, 5), item(2, 3)].
So you find all solutions, sort them by Gain, and take the last. This is just one way to do it: if you don't mind collecting all solutions, it is up to you how you want to pick out the solution you need from the list. You might also want to find all maximum solutions: see this question and answers for ideas how to do that.
The cleaner approach would be to use constraints. As the comment to your questions points out, it is not very clear what you are actually doing, but the way to go would be to use a library like CLP(FD). With it, you could simply tell labeling/2 to look for the maximum Gain first (once you have expressed your problem in terms of constraints).
greedy Approximation algorithm :
pw((P,W),Res) :- PW is P/W, Res=(PW,P,W).
pws(Ps_Ws,PWs) :- maplist(pw,Ps_Ws,PWs).
sort_desc(List,Desc_list) :-
sort(List,Slist),
reverse(Slist,Desc_list).
ransack_([],_,_,[]).
ransack_([(_,P,W)|PWs],Const,Sum,Res) :-
Sum1 is W+Sum,
Sum1 < Const ->
Res=[(P,W)|Res1],
ransack_(PWs,Const,Sum1,Res1)
;ransack_(PWs,Const,Sum,Res).
% ransack(+[(P,W)|..],+W,,Res)
ransack(L_PWs,W,Res) :-
pws(L_PWs,Aux),
sort_desc(Aux,PWs),
ransack_(PWs,W,0,Res).
Test
item(W, V)-->(V,W)
| ?- ransack([(3,2),(4,3),(5,4),(8,5),(10,9)],20,Res).
Res = [(8,5),(3,2),(4,3),(5,4)] ? ;
no
I'm building an exam scheduler in Prolog.
The scheduler is based on this example:
https://metacpan.org/source/DOUGW/AI-Prolog-0.741/examples/schedule.pl
How can I make sure there are no permutations in my solution?
For example solution
-> ((exam1, teacher1, time1, room1), (exam2, teacher2, time2, room2))
Later solution:
-> ((exam2, teacher2, time2, room2),(exam1, teacher1, time1, room1))
How can I avoid this?
Thanks!
1) The closest/easiest from what you've got is to check that the course you've chosen is strictly bigger in order than the previous one.
For example by adding an extra predicate which also includes the previous course in the combination.
%%makeListPrev(PreviousTakenCourse, ResultCombinationOfCourses, NrOfCoursesToAdd)
makeListPrev(_,[], 0).
makeListPrev(course(Tprev,Ttime,Troom),[course(Teacher,Time,Room)|Rest], N) :-
N > 0,
teacher(Teacher),
classtime(Time),
classroom(Room),
course(Tprev,Ttime,Troom) #< course(Teacher,Time,Room), %% enforce unique combinations
is(M,minus(N,1)),
makeListPrev(course(Teacher,Time,Room),Rest,M).
In this way you eliminate all duplicate permutations of the same combination by always taking the lexographically smallest.
E.g if you have 4 courses:
(a,b,c,d)
(a,b,d,c) % d can't be before c
(a,c,b,d) % c can't be before b
...
2) Another way to solve this quite easily is to first create a list of all possible courses. And then take out all possible combinations of N sequentially.
scheduler(L) :-
%% Find all possible courses
findall(course(Teacher,Time,Room),(teacher(Teacher),classtime(Time),classroom(Room)),Courses),
makeList(Courses,4,L),
different(L).
makeList([],0,[]) :- !. %% list completed
makeList([H|T],N,[H|Res]) :- %% list including H
M is N-1,
makeList(T,M,Res).
makeList([_|T], N, Res) :- makeList(T, N, Res). %% list without H
So here it is : I'm trying to calculate the sum of all primes below two millions (for this problem), but my program is very slow. I do know that the algorithm in itself is terribly bad and a brute force one, but it seems way slower than it should to me.
Here I limit the search to 20,000 so that the result isn't waited too long.
I don't think that this predicate is difficult to understand but I'll explain it anyway : I calculate the list of all the primes below 20,000 and then sum them. The sum part is fine, the primes part is really slow.
problem_010(R) :-
p010(3, [], Primes),
sumlist([2|Primes], R).
p010(20001, Primes, Primes) :- !.
p010(Current, Primes, Result) :-
(
prime(Current, Primes)
-> append([Primes, [Current]], NewPrimes)
; NewPrimes = Primes
),
NewCurrent is Current + 2,
p010(NewCurrent, NewPrimes, Result).
prime(_, []) :- !.
prime(N, [Prime|_Primes]) :- 0 is N mod Prime, !, fail.
prime(ToTest, [_|Primes]) :- prime(ToTest, Primes).
I'd like some insight about why it is so slow. Is it a good implementation of the stupid brute force algorithm, or is there some reason that makes Prolog fall?
EDIT : I already found something, by appending new primes instead of letting them in the head of the list, I have primes that occur more often at start so it's ~3 times faster. Still need some insight though :)
First, Prolog does not fail here.
There are very smart ways how to generate prime numbers. But as a cheap start simply accumulate the primes in reversed order! (7.9s -> 2.6s) In this manner the smaller ones are tested sooner. Then, consider to test only against primes up to 141. Larger primes cannot be a factor.
Then, instead of stepping only through numbers not divisible by 2, you might add 3, 5, 7.
There are people writing papers on this "problem". See, for example this paper, although it's a bit of a sophistic discussion what the "genuine" algorithm actually was, 22 centuries ago when the latest release of the abacus was celebrated as Salamis tablets.
Consider using for example a sieve method ("Sieve of Eratosthenes"): First create a list [2,3,4,5,6,....N], using for example numlist/3. The first number in the list is a prime, keep it. Eliminate its multiples from the rest of the list. The next number in the remaining list is again a prime. Again eliminate its multiples. And so on. The list will shrink quite rapidly, and you end up with only primes remaining.
First of all, appending at the end of a list using append/3 is quite slow. If you must, then use difference lists instead. (Personally, I try to avoid append/3 as much as possible)
Secondly, your prime/2 always iterates over the whole list when checking a prime. This is unnecessarily slow. You can instead just check id you can find an integral factor up to the square root of the number you want to check.
problem_010(R) :-
p010(3, 2, R).
p010(2000001, Primes, Primes) :- !.
p010(Current, In, Result) :-
( prime(Current) -> Out is In+Current ; Out=In ),
NewCurrent is Current + 2,
p010(NewCurrent, Out, Result).
prime(2).
prime(3).
prime(X) :-
integer(X),
X > 3,
X mod 2 =\= 0,
\+is_composite(X, 3). % was: has_factor(X, 3)
is_composite(X, F) :- % was: has_factor(X, F)
X mod F =:= 0, !.
is_composite(X, F) :-
F * F < X,
F2 is F + 2,
is_composite(X, F2).
Disclaimer: I found this implementation of prime/1 and has_factor/2 by googling.
This code gives:
?- problem_010(R).
R = 142913828922
Yes (12.87s cpu)
Here is even faster code:
problem_010(R) :-
Max = 2000001,
functor(Bools, [], Max),
Sqrt is integer(floor(sqrt(Max))),
remove_multiples(2, Sqrt, Max, Bools),
compute_sum(2, Max, 0, R, Bools).
% up to square root of Max, remove multiples by setting bool to 0
remove_multiples(I, Sqrt, _, _) :- I > Sqrt, !.
remove_multiples(I, Sqrt, Max, Bools) :-
arg(I, Bools, B),
(
B == 0
->
true % already removed: do nothing
;
J is 2*I, % start at next multiple of I
remove(J, I, Max, Bools)
),
I1 is I+1,
remove_multiples(I1, Sqrt, Max, Bools).
remove(I, _, Max, _) :- I > Max, !.
remove(I, Add, Max, Bools) :-
arg(I, Bools, 0), % remove multiple by setting bool to 0
J is I+Add,
remove(J, Add, Max, Bools).
% sum up places that are not zero
compute_sum(Max, Max, R, R, _) :- !.
compute_sum(I, Max, RI, R, Bools) :-
arg(I, Bools, B),
(B == 0 -> RO = RI ; RO is RI + I ),
I1 is I+1,
compute_sum(I1, Max, RO, R, Bools).
This runs an order of magnitude faster than the code I gave above:
?- problem_010(R).
R = 142913828922
Yes (0.82s cpu)
OK, before the edit the problem was just the algorithm (imho).
As you noticed, it's more efficient to check if the number is divided by the smaller primes first; in a finite set, there are more numbers divisible by 3 than by 32147.
Another algorithm improvement is to stop checking when the primes are greater than the square root of the number.
Now, after your change there are indeed some prolog issues:
you use append/3. append/3 is quite slow since you have to traverse the whole list to place the element at the end.
Instead, you should use difference lists, which makes placing the element at the tail really fast.
Now, what is a difference list? Instead of creating a normal list [1,2,3] you create this one [1,2,3|T]. Notice that we leave the tail uninstantiated. Then, if we want to add one element (or more) at the end of the list we can simply say T=[4|NT]. awesome?
The following solution (accumulate primes in reverse order, stop when prime>sqrt(N), difference lists to append) takes 0.063 for 20k primes and 17sec for 2m primes while your original code took 3.7sec for 20k and the append/3 version 1.3sec.
problem_010(R) :-
p010(3, Primes, Primes),
sumlist([2|Primes], R).
p010(2000001, _Primes,[]) :- !. %checking for primes till 2mil
p010(Current, Primes,PrimesTail) :-
R is sqrt(Current),
(
prime(R,Current, Primes)
-> PrimesTail = [Current|NewPrimesTail]
; NewPrimesTail = PrimesTail
),
NewCurrent is Current + 2,
p010(NewCurrent, Primes,NewPrimesTail).
prime(_,_, Tail) :- var(Tail),!.
prime(R,_N, [Prime|_Primes]):-
Prime>R.
prime(_R,N, [Prime|_Primes]) :-0 is N mod Prime, !, fail.
prime(R,ToTest, [_|Primes]) :- prime(R,ToTest, Primes).
also, considering adding the numbers while you generate them to avoid the extra o(n) because of sumlist/2
in the end, you can always implement the AKS algorithm that runs in polynomial time (XD)