Whilst running the b2 install command as well as getting the libs I need built/installed the header files are copied over to the include directory.
While I am iterating on build settings, is it possible to turn off the include copy as it makes the whole process very slow due to the sheer volume of hpp files?
You may enable tagged layout with --layout=tagged and set copy destination to boost source folder, b2 would just check those files instead of copying.
So command may look like this:
b2 install --layout=tagged --includedir="/path/to/your/boost/source/dir/"
Related
I've just installed Golang on my machine, and I set up GOPATH.
But when I navigate to my go/src I see that src folder contains ./sourcegraph.com, ./golang.org and ./github.com. Also GOPATH/bin and GOPATH/pkg also no empty.
So I have several questions:
1) I know how to use ./github.com folder for pushing my code to github, but why it contains , from box, some other not mine projects inside such as acroca, cweil ... and other ? Can I clear this folder?
2) What I should do with golang.org folder, can I remove it ?
3) What I should do with sourcegraph.com folder, can I remove it ?
4) Can I clear bin and pkg from preinstalled binaries and packages?
I think you not only installed the Golang but also install/configure Visual Studio Code IDE with Go Extension. Those alien repositories were created when the extension installs needed tools. The full list of tools can be found here. Or probably other similar IDE/extension which depends on those tools.
Yes you can clear the sources, since the IDE depends only on the compiled binary, and the sources are only needed during compilation.
Same as (1). Refers to Golang SubRepositories
Same as (1)
For now, you can clear the content of pkg directory but don't remove the directory. In the future, when you install some packages/libraries, the compiled version may be created under the directories, so don't remove it. For bin directory, don't remove the files inside it, because the IDE (Go Extension) depends on them.
But, since I don't know exactly what else you've done, I think before you completely remove them, try just to move them outside your GOPATH or take a backup and see whether your dev environment works as expected.
For my thesis I want to use Dlib's face_landmark_detection, but I keep running into these errors (for both Visual studio 2013 as well as 2015):
"cannot open include file: 'zlib.h': No such file or directory"
and
"'F77_INT': undeclared identifier".
It repeats itself so I have 36 errors based on these two problems.
My supervisor has given me some steps to follow to set up the project:
add dlib-master and dlib-master\examples to VC++ directories -> include directories
add dlib-master\dlib\external\libjpeg and dlib-master\dlib\entropy_decoder to C/C++ -> General -> Additional include directories
add all folders and items from dlib-master\dlib\external (cblas, libjpeg, libpng and zlib) to the project source folder
add the dlib source file (from dlib-master\dlib\all) and add face_landmark_detection (from dlib-master\examples) to the project source folder.
and according to him this has worked on every other computer so far, but on my laptop it just won't. We checked to project, but zlib.h is in the zlib folder in the project. Does anyone here have an idea on what might be going wrong?
If I didn't give enough info, please ask. I don't know what else might be needed to solve this.
I have just come about this same problem and wanted to post my solution since I have found so much conflicting documentation on the subject.
The folder containing the dlib folder as well as the libpng, libjpeg, and zlib folders from dlib/external need to be added to the additional include directories list in the solution settings.
dlib/all/source.cpp as well as the source files for libpng, libjpeg, and zlib also need to be added to the project.
Note that CBLAS should not be added to the project in any way, because it needs Fortran to compile, and it is very difficult to get this to compile from Visual Studio.
Finally, make sure to add DLIB_PNG_SUPPORT and DLIB_JPEG_SUPPORT as preprocessor defines in the project settings.
I also attempted to use a cmake generated solution, however, for some reason it had trouble with png support.
It is probably easiest to use CMake to configure your project which uses dlib. It avoids setting all those paths manually. During CMake configure step you can disable usage of libraries like zlib which you don't have/want/need. Here is an example CMakeLists.txt which works for me:
cmake_minimum_required(VERSION 2.6)
PROJECT(DatasetClassifier CXX C)
set(dlib_DIR "" CACHE PATH "Path to dlib") # http://dlib.net/
include(${dlib_DIR}/dlib/cmake)
ADD_EXECUTABLE(DatasetClassifier DatasetClassifier.cpp)
TARGET_LINK_LIBRARIES(DatasetClassifier ${dlib_LIBRARIES})
I have a big project which after make ends up with 1GB of executables and libs.
I use standard workflow: autogen, configure, make, make install. The problem is after this all the files ends up in default system directories along with other installed software and I can't selectively use strip to reduce the size of the project's executable and libraries. What is a proper workflow to strip symbols after make is done? Are there options for this in configure other then visiting each source directory and do it on my own after make is over?
I can't find any information on how to install Qt built on Windows.
In wiki article How to set up shadow builds on Mac and Linux there's description of -prefix option in configure script but this option is not available on Windows.
I know I can use Qt right from the build folder but it does not seem the right thing not to perform an install step. One problem with this approach is size; Qt's build folder takes about 4GB space whereas after installing using binary installer Qt takes about 1GB space. I guess the difference is due to temporary files created during building. I hope some install procedure would install (copy) only needed files leaving temporary files in the build folder.
As İsmail said there's no install step for Qt on Windows.
However one can try to approximate it by performing the following operations.
Cleaning
Run make clean in the build folder to remove all temporary files.
Moving
Copy build folder to the place where you want Qt "installed". Let's call it INSTALL_DIR.
Fixing paths hardcoded in the qmake.exe executable
Run qmake -query to see what paths are compiled (hardcoded) into qmake and
a. Fix paths containing the build folder by replacing it with the INSTALL_DIR using qmake -set (1).
or
b. Create a qt.conf file in the bin subfolder of the INSTALL_DIR specifing new Qt paths inside it.
Adding current directory to include path
In Qt's provided binary distributions, the pwd is included in the QMAKE_INCDIR and thus ends up in your projects include path as ".". This does not happen by default in a custom built Qt, so you have to add the following line to mkspecs/YOUR-PLATFORM-HERE/qmake.conf file:
QMAKE_INCDIR += "."
Fixing prl files
When you add a Qt component to a project file (such as CONFIG += uitools), Qt looks in %QTDIR%/lib/QtUiTools.prl to find the library dependencies of that component. These files will have the hard coded path of the directory in which Qt was configured and built. You have to replace that build directory with the one to which you moved Qt for all lib/*.prl files.
Making source available
If you made a shadow build (build made inside folder other than the one containg sources), headers in the include subfolder only forward to the original headers. For example; BUILD_DIR\include\QtCore\qabstractanimation.h looks like this
#include "SRC_DIR/src/corelib/animation/qabstractanimation.h"
If you don't want to depend on the existence of the folder containg sources you have to copy SRC_DIR/src subfolder to your destination folder and fix all headers in the include folder so that they forward to the new location of src subfolder.
The bottom line:
The build process of Qt under Windows makes it really akward to move (install) Qt after building. You should do this only if ... well I can't find any good reason to go through all this trouble.
Remember
The easy way is to place Qt's sources in the folder where you want Qt to stay after building and make a build in this folder. This makes all steps but 1 and 4 above unnecessary.
1)
The variables you set with qmake -set are saved in the registry key
HKEY_CURRENT_USER\Software\Trolltech\QMake\<QMAKE_VERSION>.
Because of this you might have a problem when you would like to have different projects using different versions of Qt which happen to have the same version of qmake. In this case the better solution is to use qt.conf file (actually files as you need one file for each Qt installation) (option 3b).
Many of the information above come from the RelocationTricks wiki page authored by Gabe Rudy. Check out his Qt (Qt4) Opensource Windows Installers of Pre-built Binaries with MSVC 2008 project which gives you easy solution of above problems.
This answer is a replacement for steps 3 and 5 of Piotr's (currently top rated) answer above, but you may still need the other steps in his answer, depending what you're trying to achieve.
This is the operation which the official installer uses to fix the hardcoded paths during the installation: qt.520.win32_msvc2012.addons/meta/installscript.qs
This is how the operation is implemented: qtpatchoperation.cpp
This is the list of files that it fixes: files-to-patch-windows-qt5
And this shows how to invoke an installer operation as a standalone command from the commandline: Operations (Qt Installer Framework Manual)
To summarize: after moving your Qt directory to where you want it, download any one of the official Qt installers and run it with the following commandline arguments:
cd <path>
installer.exe --runoperation QtPatch windows <path> qt5
Replace <path> with the full path of your Qt directory after you moved it (the qtbase directory if you are using Qt 5). Omit the final qt5 argument if you are using Qt 4.
This will fix the hardcoded paths in qmake.exe, .prl files, and others. It gives you the exact same behaviour that the official installers have in that respect.
For the initial move, nmake "INSTALL_ROOT=\somewhere" install works for me. So that's steps 1 and 2 of Piotr's answer covered. And I haven't needed steps 4 or 6, FWIW.
I can configure QT 5 on WINDOWS (Visual Studio build) with the prefix option like:
configure -prefix C:\the\path\I\want ...
then call:
nmake
nmake install
and the latter will install Qt in C:\the\path\I\want.
I did it without problems with Qt 5.2.1 and 5.3.x, so far. So, any earlier problems seem to be fixed by now.
It's very odd people claim that there is no "make install" on Windows.
I have used it many times, and I agree that it's not what it is on other platforms, but it serves its purpose.
How I use Qt's make install on Windows (from cmd):
configure
(n/mingw32-)make
(n/mingw32-)make docs
(n/mingw32-)make install
The make install bit copies all necessary headers to be able to delete your source directory. Delete all objects and unecessary stuff:
del /S /Q *.obj lib\*.dll
rmdir /S /Q docs-build qmake tools src
This allows you to remove the source directory. I don't know what impact this has on debugging Qt source code, but it sure reduces the size of a shadow build. I use it to maintain 32 and 64 bit builds with minimal size.
Qt on Windows is not installable with make install, you will notice that Qt installer for Windows just patches dlls & pdbs for the new install location.
What I would suggest is to do a shadow build in the place you would like to install it. You can manually remove *.obj files to save up space.
Qt's own build instructions show how this is done, by search/replace within each Makefile. Assuming the source was extracted to C:\qt-4.8.3 and build was performed within that directory, then do this:
fart -c -i -r Makefile* $(INSTALL_ROOT)\qt-4.8.3 $(INSTALL_ROOT)\my-install-dir
set INSTALL_ROOT=
mingw32-make install
Then create a config file that tells qmake about its new installation path. Create a textfile C:\my-install-dir\bin\qt.conf:
[Paths]
Prefix=C:/my-install-dir
Translations = translations
Then as a final step (as Randy kindly pointed out) you need to patch qmake.exe, which can be done using a simple utility called QtMove. This same tool also automatically updates all the prl files.
Step 1: Move Qt
Cut and Paste
Current directory - C:\tools\Qt
Destination directory -C:\sim\dep\Qt
Step 2: Get Old Qt Directory
Go to C:\sim\dep\Qt\2010.02.1\Qt
Open .qmake.cache
Find variable QT_SOURCE_TREE
Note the value of QT_SOURCE_TREE
Mine was C:\tools\Qt\2010.02.1\Qt
Step 3: Patch Qt
Go to C:\sim\dep\Qt\2010.02.1\bin
The syntax is qpatch.exe list oldDir newDir
qpatch.exe files-to-patch-windows C:\tools\Qt\2010.02.1\Qt C:\sim\dep\Qt\2010.02.1\Qt
Step 4: Set Environment Variables
set QTDIR=C:\sim\dep\Qt\2010.02.1\Qt
set QMAKESPEC=C:\sim\dep\Qt\2010.02.1\Qt\mkspecs\win32-g++
set PATH=%path%;C:\sim\dep\Qt\2010.02.1\Qt\bin
set PATH=%path%;C:\sim\dep\Qt\2010.02.1\bin
You can do all of this with a batch file. This took me a fair while to work out and it has saved me a lot of time since. It's a script to automatically update a Qt installation to new locations. The batch file is available here.
There is a simple utility QtMove (http://www.runfastsoft.com) can do this easily.
Runs the relocated qmake.exe build your .pro file and everything should be linked with new Qt libs.
I have a project which has been checked out of Subversion and uses Scons for building. However, I have a library installed on my computer which Scons doesn't detect - it just says that the include file can't be found. Is there any way that I can direct Scons to the library location without altering the Sconscript file at all (because I don't want to have to deal with conflicts every time I update) - e.g. add a command line option that it will detect before searching for the include file? I can't even see all the available options because it doesn't respond to the --help option before it searches for the include files.
Okay, after some more googling, I found that there is a way to do it. gcc has a number of default directories that it searches (which I already knew - I just didn't know what they were defined as). The simplest way to do what I was after is to add the directories to these environment variables. The one that I needed was
$CPATH
This sets the path where gcc searches for its include files. Setting this to the directory I needed solved my problem.
you can set env["CPPPATH"], but I hope there's an easier way...
SCons has a concept of repositories - directories to look for source and target files. These can be specified on command line.
-Y REPOSITORY, --repository=REPOSITORY, --srcdir=REPOSITORY
Search REPOSITORY for source and target files.
To get to help of SCons itself, use -H option.
no you can't, unless the developer of the scons script explicitly adds support for it.