Bug ommits data interval - possible causes? - algorithm

I have encountered a strange bug and wanted to ask if someone has any idea what might be the cause.
The bug:
When I correlate the facial width-to-height ratio (FWHR) of NHL players with their penalty minutes per games played (PIM/GP), a section of the FWHR distribution is blank (between 1.98-2 and 2-2.022; see Figure 1). The FWHR is an int/int ratio where each int has two digits. It is extremely unlikely this reflects a true signal and is therefore most likely a bug in the code I am using.
Context:
I know my PIM/P data is correct (retrieved from NHL's website) but the FWHR was calculated using an algorithm. The problem most likely lies within this facial measuring algorithm. I have not been able to locate the bug and therefore turn to you for advice.
Question:
While the code for the facial measuring algorithm is far too long to be presented here, I wanted to ask if someone might have any ideas on what might have caused it/ what I could check for?

The Nature of Ratio Distributions
Idea: It should be impossible for a ratio of two 2-digit integers to fill all 2-decimal values between two integers. Could such impossible values be especially pronounced around 2.0? For example, maybe 1.99 can not be represented?
Method: Loop through 2-digit ints and append the ratio to a list.
Then check if the list lacks values around 2.0 (e.g., 1.99).
import numpy as np
from matplotlib import pyplot as plt
def int_ratio_generator():
ratio_list = []
for i in range(1,100):
for j in range(1,100):
ratio = i/j
ratio_list.append(ratio)
return ratio_list
ratio_list = int_ratio_generator()
key = 1.99 in ratio_list
print('\nis 1.99 a possible ratio from 2-digit ints?', key)
fig, ax = plt.subplots()
X = ratio_list
Y = np.random.rand(len(ratio_list),1)
plt.scatter(X, Y, color='C0')
plt.xlim(1.8, 2.2)
plt.show()
Conclusion:
Ratios from positive 2-digit integers do not fill all possible 2-decimal values between integers, and impossible values include 1.99.
It follows that previously impossible values can be filled by including a larger range of ints, or by introducing decimal numbers within the same range.
Furthermore, as shown by the simulation above, ratio distributions with 2-digit integers will have relatively large ranges of impossible values on either side of each integer.

Related

MSE giving negative results in High-Level Synthesis

I am trying to calculate the Mean Squared Error in Vitis HLS. I am using hls::pow(...,2) and divide by n, but all I receive is a negative value for example -0.004. This does not make sense to me. Could anyone point the problem out or have a proper explanation for this??
Besides calculating the mean squared error using hls::pow does not give the same results as (a - b) * (a - b) and for information I am using ap_fixed<> types and not normal float or double precision
Thanks in advance!
It sounds like an overflow and/or underflow issue, meaning that the values reach the sign bit and are interpreted as negative while just be very large.
Have you tried tuning the representation precision or the different saturation/rounding options for the fixed point class? This tuning will depend on the data you're processing.
For example, if you handle data that you know will range between -128.5 and 1023.4, you might need very few fractional bits, say 3 or 4, leaving the rest for the integer part (which might roughly be log2((1023+128)^2)).
Alternatively, if n is very large, you can try a moving average and calculate the mean in small "chunks" of length m < n.
p.s. Getting the absolute value of a - b and store it into an ap_ufixed before the multiplication can already give you one extra bit, but adds an instruction/operation/logic to the algorithm (which might not be a problem if the design is pipelined, but require space if the size of ap_ufixed is very large).

Why is my Doc2Vec model in gensim not reproducible?

I have noticed that my gensim Doc2Vec (DBOW) model is sensitive to document tags. My understanding was that these tags are cosmetic and so they should not influence the learned embeddings. Am I misunderstanding something? Here is a minimal example:
from gensim.test.utils import common_texts
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
import numpy as np
import os
os.environ['PYTHONHASHSEED'] = '0'
reps = []
for a in [0,500]:
documents = [TaggedDocument(doc, [i + a])
for i, doc in enumerate(common_texts)]
model = Doc2Vec(documents, vector_size=100, window=2, min_count=0,
workers=1, epochs=10, dm=0, seed=0)
reps.append(np.array([model.docvecs[k] for k in range(len(common_texts))])
reps[0].sum() == reps[1].sum()
This last line returns False. I am working with gensim 3.8.3 and Python 3.5.2. More generally, is there any role that the values of the tags play (assuming they are unique)? I ask because I have found that using different tags for documents in a classification task leads to widely varying performance.
Thanks in advance.
First & foremost, your test isn't even comparing vectors corresponding to the same texts!
In run #1, the vector for the 1st text in in model.docvecs[0]. In run #2, the vector for the 1st text is in model.docvecs[1].
And, in run #2, the vector at model.docvecs[0] is just a randomly-initialized, but never-trained, vector - because none of the training texts had a document tag of (int) 0. (If using pure ints as the doc-tags, Doc2Vec uses them as literal indexes - potentially leaving any unused slots less than your highest tag allocated-and-initialized, but never-trained.)
Since common_texts only has 11 entries, by the time you reach run #12, all the vectors in your reps array of the first 11 vectors are garbage uncorrelated with any of your texts/
However, even after correcting that:
As explained in the Gensim FAQ answer #11, determinism in this algorithm shouldn't generally be expected, given many sources of potential randomness, and the fuzzy/approximate nature of the whole approach. If you're relying on it, or testing for it, you're probably making some unwarranted assumptions.
In general, tests of these algorithms should be evaluating "roughly equivalent usefulness in comparative uses" rather than "identical (or even similar) specific vectors". For example, a test whether apple and orange are roughly at the same positions in each others' nearest-neighbor rankings makes more sense than checking their (somewhat arbitrary) exact vector positions or even cosine-similarity.
Additionally:
tiny toy datasets like common_texts won't show the algorithm's usual behavior/benefits
PYTHONHASHSEED is only consulted by the Python interpreter at startup; setting it from Python can't have any effect. But also, the kind of indeterminism it introduces only comes up with separate interpreter launches: a tight loop within a single interpreter run like this wouldn't be affected by that in any case.
Have you checked the magnitude of the differences?
Just running:
delta = reps[0].sum() - reps[1].sum()
for the aggregate differences results with -1.2598932e-05 when I run it.
Comparison dimension-wise:
eps = 10**-4
over = (np.abs(diff) <= eps).all()
Returns True on a vast majority of the runs which means that you are getting quite reproducible results given the complexity of the calculations.
I would blame numerical stability of the calculations or uncontrolled randomness. Even though you do try to control the random seed, there is a different random seed in NumPy and different in random standard library so you are not controlling for all of the sources of randomness. This can also have an influence on the results but I did not check the actual implementation in gensim and it's dependencies.
Change
import os
os.environ['PYTHONHASHSEED'] = '0'
to
import os
import sys
hashseed = os.getenv('PYTHONHASHSEED')
if not hashseed:
os.environ['PYTHONHASHSEED'] = '0'
os.execv(sys.executable, [sys.executable] + sys.argv)

Decrease precision Sympy Equality Class

I am performing some symbolic calculations using Sympy, and the calculations are just too computationally expensive. I was hoping to minimize the number of bytes used per calculation, and thus increase processing speed. I am solving two polynomial equations for two unknowns, but whenever i create the Equalities using the Sympy equality class it introduces precision that did not exist in the variables supplied. It adds extra numbers to the ends to create the 15 point precision standard of sympy. I was hoping there might be a way to keep this class from doing this, or just limit the overall precision of sympy for this problem, as this amount of precision is not necessary for my calculations. I have read through all the documentation i can find on the class, and on precision handling in sympy with no luck.
My code looks like this.
c0=np.float16((math.cos(A)2)/(a2)+(math.sin(A)2)/(b2))
c1=np.float16((math.cos(A)2)/(b2)+(math.sin(A)2)/(a2))
c2=np.float16((math.sin(2*A))/(a2)-(math.sin(2*A))/(b2))
c3=np.float16((k*math.sin(2*A))/(b2)-(2*h*(math.cos(A))**2)/(a2)-(k*(math.sin(2*A)))/(a2)-(2*h*(math.sin(A))**2)/(b2))
c4=np.float16((h*math.sin(2*A))/(b2)-(2*k*(math.cos(A))**2)/(b2)-(h*(math.sin(2*A)))/(a2)-(2*k*(math.sin(A))**2)/(a2))
c5=np.float16((h2*(math.cos(A))**2)/(a2)+(kh(math.sin(2*A)))/(a2)+(k2*(math.sin(A))2)/(a2)+(h2*(math.sin(A))**2)/(b2)+(k2*(math.cos(A))**2)/(b2)-(kh(math.sin(2*A)))/(b**2)-1)
x=sym.Symbol('x', real=True)
y=sym.Symbol('y', real=True)
e=sym.Eq(c0*x2+c1*y2+c2*x*y+c3*x+c4*y+c5)
Each value of c5 originally calculates to double precision float as normal with python, and since i don't require that precision i just recast it as float16. So the values look like
c0=1.547
c1=15.43
c2=1.55
c3=5.687
c4=7.345
c5=6.433
However when cast into the equality e. The equation becomes
e=1.5470203040506025*x2 + 15.43000345000245*y2....etc
with the standard sympy 15 point precision on every coefficient, even though those numbers are not representative of the data.
I'm hoping that lowering this precision i might decrease my run time. I have a lot of these polynomials to solve for. I've already tried using sympy's float class, and eval function, and many other things. Any help would be appreciated.
Give the number of significant figures to Float as the second argument:
.>> from sympy import Float, Eq
>>> c0,c1,c2,c3,c4,c5 = [Float(i,4) for i in (c0,c1,c2,c3,c4,c5)]
>>> Eq(c0*x**2+c1*y**2+c2*x*y+c3*x+c4*y+c5,0)
Eq(1.547*x**2 + 1.55*x*y + 5.687*x + 15.43*y**2 + 7.345*y + 6.433, 0)

Generate random number in interval in PostScript

I am struggling to find a way to generate a random number within a given interval in PostScript.
Basically PostScript has three functions to help you generate (pseudo-)random numbers. Those are rand, srand and rrand.
The later two are for passing a seed to the number generator to be able to reproduce specific results. At least that´s what I understood they are for. Anyway they don´t seem suitable for my case.
So rand seems to be the only function I can use to generate a random number, but...
rand returns a random integer in the range 0 to 231 − 1 (From the PostScript Language Reference, page 637 (651 in the PDF))
This is far beyond the the interval I´m looking for. I am more interested in values up to small thousands, maybe 10.000 or something like that and small float values, up to 100, all with the lower limit of 0.
I thought I could just narrow my numbers down by simple divisions and extracting the root but that tends to give me unusable small values in quite a lot cases. I am wondering if there are robust ways to either shrink a large number down to what I need or, I´d prefer that, only generate numbers in the desired interval.
Besides: while-loops are not possible in PostScript, otherwise I´d have written a function to generate numbers until they fit in my interval.
Any hints on what to look for breaking numbers down into my interval?
mod is often good enough and it's fast. But you may get a more uniform distribution by using floating-point ops.
rand 16#7fffffff div 100 mul cvi
This is because mod discards the upper bits of the input. And the PRNG is usually trying to randomize over all the bits. By scaling down then up, they all contribute something in the way of rounding effects.
Just use the modulo operator to get it down to the size you want:
GS>rand 100 mod stack
7

Algorithm to find a common multiplier to convert decimal numbers to whole numbers

I have an array of numbers that potentially have up to 8 decimal places and I need to find the smallest common number I can multiply them by so that they are all whole numbers. I need this so all the original numbers can all be multiplied out to the same scale and be processed by a sealed system that will only deal with whole numbers, then I can retrieve the results and divide them by the common multiplier to get my relative results.
Currently we do a few checks on the numbers and multiply by 100 or 1,000,000, but the processing done by the *sealed system can get quite expensive when dealing with large numbers so multiplying everything by a million just for the sake of it isn’t really a great option. As an approximation lets say that the sealed algorithm gets 10 times more expensive every time you multiply by a factor of 10.
What is the most efficient algorithm, that will also give the best possible result, to accomplish what I need and is there a mathematical name and/or formula for what I’m need?
*The sealed system isn’t really sealed. I own/maintain the source code for it but its 100,000 odd lines of proprietary magic and it has been thoroughly bug and performance tested, altering it to deal with floats is not an option for many reasons. It is a system that creates a grid of X by Y cells, then rects that are X by Y are dropped into the grid, “proprietary magic” occurs and results are spat out – obviously this is an extremely simplified version of reality, but it’s a good enough approximation.
So far there are quiet a few good answers and I wondered how I should go about choosing the ‘correct’ one. To begin with I figured the only fair way was to create each solution and performance test it, but I later realised that pure speed wasn’t the only relevant factor – an more accurate solution is also very relevant. I wrote the performance tests anyway, but currently the I’m choosing the correct answer based on speed as well accuracy using a ‘gut feel’ formula.
My performance tests process 1000 different sets of 100 randomly generated numbers.
Each algorithm is tested using the same set of random numbers.
Algorithms are written in .Net 3.5 (although thus far would be 2.0 compatible)
I tried pretty hard to make the tests as fair as possible.
Greg – Multiply by large number
and then divide by GCD – 63
milliseconds
Andy – String Parsing
– 199 milliseconds
Eric – Decimal.GetBits – 160 milliseconds
Eric – Binary search – 32
milliseconds
Ima – sorry I couldn’t
figure out a how to implement your
solution easily in .Net (I didn’t
want to spend too long on it)
Bill – I figure your answer was pretty
close to Greg’s so didn’t implement
it. I’m sure it’d be a smidge faster
but potentially less accurate.
So Greg’s Multiply by large number and then divide by GCD” solution was the second fastest algorithm and it gave the most accurate results so for now I’m calling it correct.
I really wanted the Decimal.GetBits solution to be the fastest, but it was very slow, I’m unsure if this is due to the conversion of a Double to a Decimal or the Bit masking and shifting. There should be a
similar usable solution for a straight Double using the BitConverter.GetBytes and some knowledge contained here: http://blogs.msdn.com/bclteam/archive/2007/05/29/bcl-refresher-floating-point-types-the-good-the-bad-and-the-ugly-inbar-gazit-matthew-greig.aspx but my eyes just kept glazing over every time I read that article and I eventually ran out of time to try to implement a solution.
I’m always open to other solutions if anyone can think of something better.
I'd multiply by something sufficiently large (100,000,000 for 8 decimal places), then divide by the GCD of the resulting numbers. You'll end up with a pile of smallest integers that you can feed to the other algorithm. After getting the result, reverse the process to recover your original range.
Multiple all the numbers by 10
until you have integers.
Divide
by 2,3,5,7 while you still have all
integers.
I think that covers all cases.
2.1 * 10/7 -> 3
0.008 * 10^3/2^3 -> 1
That's assuming your multiplier can be a rational fraction.
If you want to find some integer N so that N*x is also an exact integer for a set of floats x in a given set are all integers, then you have a basically unsolvable problem. Suppose x = the smallest positive float your type can represent, say it's 10^-30. If you multiply all your numbers by 10^30, and then try to represent them in binary (otherwise, why are you even trying so hard to make them ints?), then you'll lose basically all the information of the other numbers due to overflow.
So here are two suggestions:
If you have control over all the related code, find another
approach. For example, if you have some function that takes only
int's, but you have floats, and you want to stuff your floats into
the function, just re-write or overload this function to accept
floats as well.
If you don't have control over the part of your system that requires
int's, then choose a precision to which you care about, accept that
you will simply have to lose some information sometimes (but it will
always be "small" in some sense), and then just multiply all your
float's by that constant, and round to the nearest integer.
By the way, if you're dealing with fractions, rather than float's, then it's a different game. If you have a bunch of fractions a/b, c/d, e/f; and you want a least common multiplier N such that N*(each fraction) = an integer, then N = abc / gcd(a,b,c); and gcd(a,b,c) = gcd(a, gcd(b, c)). You can use Euclid's algorithm to find the gcd of any two numbers.
Greg: Nice solution but won't calculating a GCD that's common in an array of 100+ numbers get a bit expensive? And how would you go about that? Its easy to do GCD for two numbers but for 100 it becomes more complex (I think).
Evil Andy: I'm programing in .Net and the solution you pose is pretty much a match for what we do now. I didn't want to include it in my original question cause I was hoping for some outside the box (or my box anyway) thinking and I didn't want to taint peoples answers with a potential solution. While I don't have any solid performance statistics (because I haven't had any other method to compare it against) I know the string parsing would be relatively expensive and I figured a purely mathematical solution could potentially be more efficient.
To be fair the current string parsing solution is in production and there have been no complaints about its performance yet (its even in production in a separate system in a VB6 format and no complaints there either). It's just that it doesn't feel right, I guess it offends my programing sensibilities - but it may well be the best solution.
That said I'm still open to any other solutions, purely mathematical or otherwise.
What language are you programming in? Something like
myNumber.ToString().Substring(myNumber.ToString().IndexOf(".")+1).Length
would give you the number of decimal places for a double in C#. You could run each number through that and find the largest number of decimal places(x), then multiply each number by 10 to the power of x.
Edit: Out of curiosity, what is this sealed system which you can pass only integers to?
In a loop get mantissa and exponent of each number as integers. You can use frexp for exponent, but I think bit mask will be required for mantissa. Find minimal exponent. Find most significant digits in mantissa (loop through bits looking for last "1") - or simply use predefined number of significant digits.
Your multiple is then something like 2^(numberOfDigits-minMantissa). "Something like" because I don't remember biases/offsets/ranges, but I think idea is clear enough.
So basically you want to determine the number of digits after the decimal point for each number.
This would be rather easier if you had the binary representation of the number. Are the numbers being converted from rationals or scientific notation earlier in your program? If so, you could skip the earlier conversion and have a much easier time. Otherwise you might want to pass each number to a function in an external DLL written in C, where you could work with the floating point representation directly. Or you could cast the numbers to decimal and do some work with Decimal.GetBits.
The fastest approach I can think of in-place and following your conditions would be to find the smallest necessary power-of-ten (or 2, or whatever) as suggested before. But instead of doing it in a loop, save some computation by doing binary search on the possible powers. Assuming a maximum of 8, something like:
int NumDecimals( double d )
{
// make d positive for clarity; it won't change the result
if( d<0 ) d=-d;
// now do binary search on the possible numbers of post-decimal digits to
// determine the actual number as quickly as possible:
if( NeedsMore( d, 10e4 ) )
{
// more than 4 decimals
if( NeedsMore( d, 10e6 ) )
{
// > 6 decimal places
if( NeedsMore( d, 10e7 ) ) return 10e8;
return 10e7;
}
else
{
// <= 6 decimal places
if( NeedsMore( d, 10e5 ) ) return 10e6;
return 10e5;
}
}
else
{
// <= 4 decimal places
// etc...
}
}
bool NeedsMore( double d, double e )
{
// check whether the representation of D has more decimal points than the
// power of 10 represented in e.
return (d*e - Math.Floor( d*e )) > 0;
}
PS: you wouldn't be passing security prices to an option pricing engine would you? It has exactly the flavor...

Resources