CPU burst balance value for Heroku pg:diagnose - heroku

I've been working to optimize performance of a Postgres database (Standard-0 plan) hosted on Heroku.
When running heroku pg:diagnose, I see a YELLOW: CPU Burst message, along with a Balance value. The Balance values I've seen have ranged from ~3 to ~300 over time.
What does the balance value refer to, and how should it be interpreted?

I wouldn't worry so much about the number itself, though I suspect that it represents the number of CPU burst credits (an AWS concept) remaining. In the documentation for pg:diagnose, YELLOW sounds like you're actively using burst credits and will run out at some point whereas RED indicates that you've exhausted those credits.

Related

Would communication and inter-connection have any impact on a computation bound application on multinode?

I have a computation bound application. I have executed it on multi-nodes ( 4nodes, 8nodes) I'm wondering if communication between the nodes could have any effect on the run time? If so, how would it be possible? because as far as I found, computation bound application just depends on the computing capability of system.
Also, can I consider CPU amount of my system as computing capability?
Any help would be appreciated.
Updated:
In order to see if the application is memory-bound or compute-bound, I've run the application over 1 nodes using different number of cores. For that application (NPB-LU), the run time decreased linearly by increasing the number of cores. So I found this application could be compute-bound (I didn't have another option to figure it out).
Then, I have predicted the run time of the application with a model which considers the latency(in my case it's message-time) in different connection levels like inter-socket, inter-node. There are some difference in the predicted time which achieved by different latency connection levels although the application seemed to be computation-bound.
n:grid size, p:number of cores, m(total Mops/s), f(Mop/s/core)
Imagine you have horse that is drinking water, let's say 1 liter per minute.
In order to give the water to the horse you have a water well where you can take the water from. Imagine you can pump up to 1.5 liters per minute.
Having this situation your water consumption is horse-bounded.
Then it turns out that you have two horses drinking the same amount of water: 1 liter each per minute. Then your water consumption is no longer horse-bounded but well-bounded.
Your application behavior can change depending of the environment. In order to determine what is happening to your application I recommend you to profile your app. You have a lot of alternatives such as gprof, perf, PAPI and many others to better observe what is your application behaviour.
Then you can determine experimentally very intersting metrics like Instructions per Clock cycle, which can give you a better understanding of the behaviour of your app.

Heroku web dynos often slowing down but never getting more than 20% load?

A couple of times a day we see the response time of any one of our Heroku web dynos increase tremendously. We have been analyzing this with little success so far.
One strange thing we see, however, is the following. Look at this "Instances running" graph from New Relic:
You see that we've played around with the number of web dyno's, but the majority of the time we have had 2 dynos with 4 Unicorn processes each. But never ever do these instances seem to get the "full load". How should we interpret this? Is this just that at any time the sum of CPU usage of all instances never exceeds approx. 20%? And if so, it seems we're really underutilizing our dynos. What can we optimize here?
For clarity: the average memory usage is constant between 110MB and 120MB, so that does not seem to be the bottleneck.
Have you seen http://news.rapgenius.com/James-somers-herokus-ugly-secret-lyrics ?
Heroku has worked on addressing this, but you'll need to talk to them for further recommendations.

Efficiently using a rate-limited API (Echo Nest) with distributed clients

Background
Echo Nest have a rate limited API. A given application (identified in requests using an API key) can make up to 120 REST calls a minute. The service response includes an estimate of the total number of calls made in the last minute; repeated abuse of the API (exceeding the limit) may cause the API key to be revoked.
When used from a single machine (a web server providing a service to clients) it is easy to control access - the server has full knowledge of the history of requests and can regulate itself correctly.
But I am working on a program where distributed, independent clients make requests in parallel.
In such a case it is much less clear what an optimal solution would be. And in general the problem appears to be undecidable - if over 120 clients, all with no previous history, make an initial request at the same time, then the rate will be exceeded.
But since this is a personal project, and client use is expected to be sporadic (bursty), and my projects have never been hugely successful, that is not expected to be a huge problem. A more likely problem is that there are times when a smaller number of clients want to make many requests as quickly as possible (for example, a client may need, exceptionally, to make several thousand requests when starting for the first time - it is possible two clients would start at around the same time, so they must cooperate to share the available bandwidth).
Given all the above, what are suitable algorithms for the clients so that they rate-limit appropriately? Note that limited cooperation is possible because the API returns the total number of requests in the last minute for all clients.
Current Solution
My current solution (when the question was written - a better approach is given as an answer) is quite simple. Each client has a record of the time the last call was made and the number of calls made in the last minute, as reported by the API, on that call.
If the number of calls is less than 60 (half the limit) the client does not throttle. This allows for fast bursts of small numbers of requests.
Otherwise (ie when there are more previous requests) the client calculates the limiting rate it would need to work at (ie period = 60 / (120 - number of previous requests)) and then waits until the gap between the previous call and the current time exceeds that period (in seconds; 60 seconds in a minute; 120 max requests per minute). This effectively throttles the rate so that, if it were acting alone, it would not exceed the limit.
But the above has problems. If you think it through carefully you'll see that for large numbers of requests a single client oscillates and does not reach maximum throughput (this is partly because of the "initial burst" which will suddenly "fall outside the window" and partly because the algorithm does not make full use of its history). And multiple clients will cooperate to an extent, but I doubt that it is optimal.
Better Solutions
I can imagine a better solution that uses the full local history of the client and models other clients with, say, a Hidden Markov Model. So each client would use the API report to model the other (unknown) clients and adjust its rate accordingly.
I can also imagine an algorithm for a single client that progressively transitions from unlimited behaviour for small bursts to optimal, limited behaviour for many requests without introducing oscillations.
Do such approaches exist? Can anyone provide an implementation or reference? Can anyone think of better heuristics?
I imagine this is a known problem somewhere. In what field? Queuing theory?
I also guess (see comments earlier) that there is no optimal solution and that there may be some lore / tradition / accepted heuristic that works well in practice. I would love to know what... At the moment I am struggling to identify a similar problem in known network protocols (I imagine Perlman would have some beautiful solution if so).
I am also interested (to a lesser degree, for future reference if the program becomes popular) in a solution that requires a central server to aid collaboration.
Disclaimer
This question is not intended to be criticism of Echo Nest at all; their service and conditions of use are great. But the more I think about how best to use this, the more complex/interesting it becomes...
Also, each client has a local cache used to avoid repeating calls.
Updates
Possibly relevant paper.
The above worked, but was very noisy, and the code was a mess. I am now using a simpler approach:
Make a call
From the response, note the limit and count
Calculate
barrier = now() + 60 / max(1, (limit - count))**greedy
On the next call, wait until barrier
The idea is quite simple: that you should wait some length of time proportional to how few requests are left in that minute. For example, if count is 39 and limit is 40 then you wait an entire minute. But if count is zero then you can make a request soon. The greedy parameter is a trade-off - when greater than 1 the "first" calls are made more quickly, but you are more likely hit the limit and end up waiting for 60s.
The performance of this is similar to the approach above, and it's much more robust. It is particularly good when clients are "bursty" as the approach above gets confused trying to estimate linear rates, while this will happily let a client "steal" a few rapid requests when demand is low.
Code here.
After some experimenting, it seems that the most important thing is getting as good an estimate as possible for the upper limit of the current connection rates.
Each client can track their own (local) connection rate using a queue of timestamps. A timestamp is added to the queue on each connection and timestamps older than a minute are discarded. The "long term" (over a minute) average rate is then found from the first and last timestamps and the number of entries (minus one). The "short term" (instantaneous) rate can be found from the times of the last two requests. The upper limit is the maximum of these two values.
Each client can also estimate the external connection rate (from the other clients). The "long term" rate can be found from the number of "used" connections in the last minute, as reported by the server, corrected by the number of local connections (from the queue mentioned above). The "short term" rate can be estimated from the "used" number since the previous request (minus one, for the local connection), scaled by the time difference. Again, the upper limit (maximum of these two values) is used.
Each client computes these two rates (local and external) and then adds them to estimate the upper limit to the total rate of connections to the server. This value is compared with the target rate band, which is currently set to between 80% and 90% of the maximum (0.8 to 0.9 * 120 per minute).
From the difference between the estimated and target rates, each client modifies their own connection rate. This is done by taking the previous delta (time between the last connection and the one before) and scaling it by 1.1 (if the rate exceeds the target) or 0.9 (if the rate is lower than the target). The client then refuses to make a new connection until that scaled delta has passed (by sleeping if a new connected is requested).
Finally, nothing above forces all clients to equally share the bandwidth. So I add an additional 10% to the local rate estimate. This has the effect of preferentially over-estimating the rate for clients that have high rates, which makes them more likely to reduce their rate. In this way the "greedy" clients have a slightly stronger pressure to reduce consumption which, over the long term, appears to be sufficient to keep the distribution of resources balanced.
The important insights are:
By taking the maximum of "long term" and "short term" estimates the system is conservative (and more stable) when additional clients start up.
No client knows the total number of clients (unless it is zero or one), but all clients run the same code so can "trust" each other.
Given the above, you can't make "exact" calculations about what rate to use, but you can make a "constant" correction (in this case, +/- 10% factor) depending on the global rate.
The adjustment to the client connection frequency is made to the delta between the last two connection (adjusting based on the average over the whole minute is too slow and leads to oscillations).
Balanced consumption can be achieved by penalising the greedy clients slightly.
In (limited) experiments this works fairly well (even in the worst case of multiple clients starting at once). The main drawbacks are: (1) it doesn't allow for an initial "burst" (which would improve throughput if the server has few clients and a client has only a few requests); (2) the system does still oscillate over ~ a minute (see below); (3) handling a larger number of clients (in the worst case, eg if they all start at once) requires a larger gain (eg 20% correction instead of 10%) which tends to make the system less stable.
The "used" amount reported by the (test) server, plotted against time (Unix epoch). This is for four clients (coloured), all trying to consume as much data as possible.
The oscillations come from the usual source - corrections lag signal. They are damped by (1) using the upper limit of the rates (predicting long term rate from instantaneous value) and (2) using a target band. This is why an answer informed by someone who understand control theory would be appreciated...
It's not clear to me that estimating local and external rates separately is important (they may help if the short term rate for one is high while the long-term rate for the other is high), but I doubt removing it will improve things.
In conclusion: this is all pretty much as I expected, for this kind of approach. It kind-of works, but because it's a simple feedback-based approach it's only stable within a limited range of parameters. I don't know what alternatives might be possible.
Since you're using the Echonest API, why don't you take advantage of the rate limit headers that are returned with every API call?
In general you get 120 requests per minute. There are three headers that can help you self-regulate your API consumption:
X-Ratelimit-Used
X-Ratelimit-Remaining
X-Ratelimit-Limit
**(Notice the lower-case 'ell' in 'Ratelimit'--the documentation makes you think it should be capitalized, but in practice it is lower case.)
These counts account for calls made by other processes using your API key.
Pretty neat, huh? Well, I'm afraid there is a rub...
That 120-request-per-minute is really an upper bound. You can't count on it. The documentation states that value can fluctuate according to system load. I've seen it as low as 40ish in some calls I've made, and have in some cases seen it go below zero (I really hope that was a bug in the echonest API!)
One approach you can take is to slow things down once utilization (used divided by limit) reaches a certain threshold. Keep in mind though, that on the next call your limit may have been adjusted download significantly enough that 'used' is greater than 'limit'.
This works well up until a point. Since the Echonest doesn't adjust the limit in a predictable mannar, it is hard to avoid 400s in practice.
Here are some links that I've found helpful:
http://blog.echonest.com/post/15242456852/managing-your-api-rate-limit
http://developer.echonest.com/docs/v4/#rate-limits

What is the Difference between a Light, Medium or Heavy utilization Reserved instances on EC2?

They talk about the different utilization instances, but I can't find a single place that actually states what the difference is between a light utilization Large instance or a heavy utilization Large instance other than price. Can someone please tell me what the difference is?
The instances are the same. It's just a pricing difference so you can save money if you know you will be using the instance a lot, by paying an upfront cost.
You pay more up front for a heavier utilization instance, but you save more in the long run assuming you have it running all the time, because the hourly rate is cheaper.
So it's just a matter of how much you will be using the instance (having it running) that determines which type is the best value for you. If it will be on all the time for a year or 3 years, then a heavy utilization is definitely the cheapest option.
on demand, light, medium, and heavy offer different up-front vs hourly costs, with progressively higher up-front costs, and lower per-hour costs..
according to http://aws.amazon.com/ec2/reserved-instances/
Light Utilization RIs – The break-even point for a Light Utilization Linux RI (vs. On-Demand Instances) is 28% for a 1-year term or 11% of a 3-year term. If you expect to use your instance more than that, an RI will save you money.
Medium Utilization RIs – The break-even point for a Medium Utilization Linux RI (vs. Light Utilization Reserved Instances) is 41% for a 1-year term or 19% of a 3-year term.
Heavy Utilization RIs – The break-even point for a Heavy Utilization Linux RIs (vs. Medium Utilization Reserved Instances) is 56% for a 1-year term or 35% of a 3-year term.
Here's a link to Amazon's documentation:
http://aws.amazon.com/ec2/reserved-instances/#2
It doesn't explain/quantify what amount of usage constitutes Light, Medium, or Large but it gives a ballpark amount.
To summarize (excerpted from the above documentation):
Light Utilization RIs are ideal for periodic workloads that only run a couple of hours a day, a few days per week, or very sporadically
Medium Utilization RIs are best suited for workloads that run most of the time, but have some variability in usage (like web server traffic where demand may increase or decrease throughout the year)
Heavy Utilization RIs offer the most absolute savings of any Reserved Instance type. They’re most appropriate for steady-state workloads where you’re willing to commit to always running these instances in exchange for our lowest hourly usage fee
If you're like me and wanted to see what we're getting for the prices we're paying for Light, Medium, and Heavy, here it is.
I think the answers are already great here. Just a tip that may help you to select the right reservation type is http://www.cloudorado.com/ . Go to advanced mode and then select how long you plan to run service (subscription duration) and how long the server will run per day. The service will choose the best reservation option - you can see it in details.
The math here gets a little complicated. But, at the end of the day, it comes down to how many hours you'll be running instances for the reservation type/size/region that you have. It's gotten even more complicated now that you can trade in reservations for different AZ's and sizes.
There's a great blog series on choosing Reserved Instance types/quantities on the Cloudability blog.
http://cldy.co/choosing-ri-types
There's also a webinar recording that covers all the math:
http://cldy.co/ri-webinar-recording
Full disclosure: I work for Cloudability.

AWS AutoScaling not working / CPU Utilization stays sub 30%

I have setup AWS AutoScaling as following:
1) created a Load Balancer and registered one instance with it;
2) added Health Checks to the ELB;
3) added 2 Alarms:
- CPU Usage -> 60% for 60s, spin up 1 instance;
- CPU usage < 40% for 120s, spin down 1 instance;
4) wrote a jMeter script to send traffic to the website in question: 250 threads, 200 seconds ramp up time, loop count 5.
What I am seeing was very strange.
I expect the CPU usage to shoot up with the higher number of users. But instead the CPU usage stays between 20-30% (which is why the new instance never fires up) and running instance starts throwing timeout errors once it reaches anything more than 100 users.
I am at a loss to understand why CPU usage is so low when the website is in fact timing out.
Ideas?
This could be a problem with the ELB. The ELB does not scale very quickly, it takes a consistent amount of traffic to the ELB to let amazon know you need a bigger one. If you just hit it really hard all at once that does not help it scale. So the ELB could be having problems handling all the connections.
Is this SSL? Are you doing SSL on the ELB? That would add overhead to an underscaled ELB as well.
I would honestly recommend not using ELB at all. haproxy is a much better product and much faster in most cases. I can elaborate if needed, but just look at how Amazon handles the cname vs what you can do with haproxy...
It sounds like you are testing AutoScaling to ensure it will work for your needs. As a first pass to simply see if AS will launch a new instance, try reducing your CPU up check to trigger at 25%. I realize this is a lot lower than you are hoping to use moving forward, but it will help validate that your initial configuration is working.
As a second step, you should take a look at your application and see if CPU is the best metric to have AS monitor for scaling. It is possible that you have a bottleneck somewhere else in your app that may not necessarily be CPU related (web server tuning, memory, databases, storage, etc). You didn't mention what type of content you're serving out; is it static or generated by an interpreter (like PHP or something else)? You could also send your own custom metric data into CloudWatch and use this metric to trigger the scaling.
You may also want to time how long it takes for an instance to be ready to serve traffic from a cold start. If it takes longer than 60 seconds, you may want to adjust your monitoring threshold time appropriately (or set cool down periods). As chantheman pointed out, it can take some time for the ELB to register the instance as well (and a longer amount of time if the new instance is in a different AZ).
I hope all of this helps.
What we discovered is that when you are using autoscale on t2 instances, and under heavy load, those instances will run out of CPU credits and then they are limited to 20% of CPU (from the monitoring point of view, internal htop is still 100%). Internally they are at maximum load.
This sends false metric to Autoscaling and news instances will not fire.
You need to change metric or develop you own or move to m instances.

Resources