How can design search engine that can query very fast? - elasticsearch

Im designing an architecture of search engine according to condition base search.
Each record contains multiple columns which can be, string, number, date... And I want to query records as fast as possible using queries that are condition based. (a client will query to view current records according to his filter/query)
For example:
query = (record.date > sysdate - 5 AND record.name like '%TEST%') OR (record.priority > 2 AND record.date > sysdate -2)...
What is the best way to do it?
I thought about using elasticsearch but will it be fast enough for the client?
It should be noted that the system is dynamic and records are always change, added and removed. Also, there are a lot of records stored in the system.

based on the post and comments, I think Elasticsearch will work well for this
how to make it fast?
make sure your mappings and queries are optimised
provide adequate hardware resources for the cluster
monitor your cluster and queries

Related

Filter result in memory to search in elasticsearch from multiple indexes

I have 2 indexes and they both have one common field (basically relationship).
Now as elastic search is not giving filters from multiple indexes, should we store them in memory in variable and filter them in node.js (which basically means that my application itself is working as a database server now).
We previously were using MongoDB which is also a NoSQL DB but we were able to manage it through aggregate queries but seems the elastic search is not providing that.
So even if we use both databases combined, we have to store results of them somewhere to further filter data from them as we are giving users advanced search functionality where they are able to filter data from multiple collections.
So should we store results in memory to filter data further? We are currently giving advanced search in 100 million records to customers but that was not having the advanced text search that elastic search provides, now we are planning to provide elastic search text search to customers.
What do you suggest should we use the approach here to make MongoDB and elastic search together? We are using node.js to serve data.
Or which option to choose from
Denormalizing: Flatten your data
Application-side joins: Run multiple queries on normalized data
Nested objects: Store arrays of objects
Parent-child relationships: Store multiple documents through joins
https://blog.mimacom.com/parent-child-elasticsearch/
https://spoon-elastic.com/all-elastic-search-post/simple-elastic-usage/denormalize-index-elasticsearch/
Storing things client side in memory is not the solution.
First of all the simplest way to solve this problem is to simply make one combined index. Its very trivial to do this. Just insert all the documents from index 2 into index 1. Prefix all fields coming from index-2 by some prefix like "idx2". That way you won't overwrite any similar fields. You can use an ingestion pipeline to do this, or just do it client side. You only will ever do this once.
After that you can perform aggregations on the single index, since you have all the data in one-index.
If you are using somehting other than ES as your primary data-store you need to reconfigure the indexing operation to redirect everything that was earlier going into index-2 to go into index-1 as well(with the prefixed terms).
100 million records is trivial for something like ELasticsearch. Doing anykind of "joins" client side is NOT RECOMMENDED, as this will obviate the entire value of using ES.
If you need any further help on executing this, feel free to contact me. I have 11 years exp in ES. And I have seen people struggle with "joins" for 99% of the time. :)
The first thing to do when coming from MySQL/PostGres or even Mongodb is to restructure the indices to suit the needs of data-querying. Never try to work with multiple indices, ES is not built for that.
HTH.

How does ElasticSearch handle an index with 230m entries?

I was looking through elasticsearch and was noticing that you can create an index and bulk add items. I currently have a series of flat files with 220 million entries. I am working on Logstash to parse and add them to ElasticSearch, but I feel that it existing under 1 index would be rough to query. The row data is nothing more than 1-3 properties at most.
How does Elasticsearch function in this case? In order to effectively query this index, do you just add additional instances to the cluster and they will work together to crunch the set?
I have been walking through the documentation, and it is explaining what to do, but not necessarily all the time explaining why it does what it does.
In order to effectively query this index, do you just add additional instances to the cluster and they will work together to crunch the set?
That is exactly what you need to do. Typically it's an iterative process:
start by putting a subset of the data in. You can also put in all the data, if time and cost permit.
put some search load on it that is as close as possible to production conditions, e.g. by turning on whatever search integration you're planning to use. If you're planning to only issue queries manually, now's the time to try them and gauge their speed and the relevance of the results.
see if the queries are particularly slow and if their results are relevant enough. You change the index mappings or queries you're using to achieve faster results, and indeed add more nodes to your cluster.
Since you mention Logstash, there are a few things that may help further:
check out Filebeat for indexing the data on an ongoing basis. You may not need to do the work of reading the files and bulk indexing yourself.
if it's log or log-like data and you're mostly interested in more recent results, it could be a lot faster to split up the data by date & time (e.g. index-2019-08-11, index-2019-08-12, index-2019-08-13). See the Index Lifecycle Management feature for automating this.
try using the Keyword field type where appropriate in your mappings. It stops analysis on the field, preventing you from doing full-text searches inside the field and only allowing exact string matches. Useful for fields like a "tags" field or a "status" field with something like ["draft", "review", "published"] values.
Good luck!

ElasticSearch vs Relational Database

I'm creating a microservice to handle the contacts that are created in the software. I'll need to create contacts and also search if a contact exists based on some information (name, last name, email, phone number). The idea is the following:
A customer calls, if it doesn't exist we create the contact asking all his personal information. The second time he calls, we will search coincidences by name, last name, email, to detect that the contact already exists in our DB.
What I thought is to use a MongoDB as primary storage and use ElasticSearch to perform the query, but I don't know if there is really a big difference between this and querying in a common relational database.
EDIT: Imagine a call center that is getting calls all the time from mostly different people, and we want to search fast (by name, email, last name) if that person it's in our DB, wouldn't ElasticSearch be good for this?
A relational database can store data and also index it.
A search engine can index data but also store it.
Relational databases are better in read-what-was-just-written performance. Search engines are better at really quick search with additional tricks like all kinds of normalization: lowercase, รค->a or ae, prefix matches, ngram matches (if indexed respectively). Whether its 1 million or 10 million entries in the store is not the big deal nowadays, but what is your query load? Well, there are only this many service center workers, so your query load is likely far less than 1qps. No problem for a relational DB at all. The search engine would start to make sense if you want some normalization, as described above, or you start indexing free text comments, descriptions of customers.
If you don't have a problem with performance, then keep it simple and use 1 single datastore (maybe with some caching in your application).
Elasticsearch is not meant to be a primary datastore so my advice is to use a simple relational database like Postgres and use simple SQL queries / a ORM mapper. If the dataset is not really large it should be fast enough.
When you have performance issues on searches you can use a combination of relation db and Elasticsearch. You can use Elasticsearch feeders to update ES with your data in you relational db.
Indexed RDBMS works well for search
If your data is structured i.e. columns are clearly defined, searching 1 million records will also not be a problem in RDBMS.
When to use Elastic
Text Search: Searching words across multiple properties (e.g. description, name etc.)
JSON Store and search: If data being stored is in json format and later needs to be searched
Auto Suggestions: Elastic is better at providing autocomplete suggestions
Elastic as an application data provider
Elastic should not be seen as data store, even if you storing data in it. It is about how you perceive elastic. Elastic should be used to store and setup data for the application. It is the application which decides how and when to use elastic (search and suggestions). Elastic is not a nosql storage alternative if compared to RDBMS, you should use a nosql database instead.
This perception puts elastic in line with redis and kafka. These tools are key components of an application design and they are used to serve as events stores, search engines and cache etc. to the applications.
Database with Elastic
Your design should use both. For storing the contacts use the database, index the contacts for querying. Also make the data available in elastic for searching, autocomplete and related matches.
As always, it depends on your specific use case. You briefly described it, but how are you acually going to use the data?
If it's just something simple like checking if a customer exists and then creating a new customer, then use the RDMS option. Moreover, if you don't expect a large dataset, so that scaling isn't an issue (hence the designation that Elasticsearch is for BigData), but you have transactions and data integrity is important, then a RDMS will be the right fit. Some examples could be for tax, leasing, or financial reporting systems.
However, if you have a large dataset, you need a wide range of query capabilities, such as a fuzzy search or searches where the user
can select multiple filters on the data or you want to do some predictive analysis on the data, then Elasticsearch is the clear choice.
For example, I worked on an web based app with a large customer base: 11 million, with 200+ hits per second at peak time for a find a doctor application. The customer could check some checkboxes to determine, specialty, spoken languages, ratings, hospitals, etc. all sorted by the distance from the users location with a 2 second or less response time. It would be very difficult for a RDMS to match that.

How to search for multiple strings in very large database

I want to search for multiple strings in a very large database. These strings are part of different attributes of database table. I have tried string search using LIKE in sql query. But it is taking a lot of time to get results. I have used Oracle database.
Should I use indexing of database? I found that Lucene can be used for it.
I also got some suggestions of using big data concepts. Which approach should I use?
The easiest way is:
1.) adding an index to the columns you like to search trough
2.) using oracle text as #lalitKumarB wrote
The most powerful way is:
3.) use an separate search engine (solr, elaticsearch).
But, probably you have to change you application in order to explicit use the search index for searching trough the data,...
I had the same situation some years before. Trying to search text in an big database. After a wile I found out, that database based search will never reach the performance of an dedicate search engine. And: you will have much more search features working out of the box, if you use solr (for example), like spelling correction, "More like this", ...
One option is to hold the data on orcale, searching in solr and return the ID of the document in order to only load the one row form oracle, the is referenced by the ID.
2nd option is to keep oracle as base datapool for your search engine and search in solr (or elasticsearch) in order to return the whole document/row from solr, not only the ID. So you don't need to load the data from the database any more.
The best option depends on your needs.
You have the choice between elasticsearch, solr or lucene

Does Elasticsearch stream results?

Does Elasticsearch stream the query results as they are "calculated" or does it calculate everything and then return the final response back to the client?
By default elasticsearch will only return a limited set of results for a query. (i.e. searching for * will only return the default count set regardless of the number of matches).
Generally to implement "streaming" , you make an initial search to get total count of matching documents and then ask for documents in ranges ( i.e. first 10, next 10, etc.. )
See
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-from-size.html
for how to request the number of documents returned.
Have you tried scroll query?
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-scroll.html much easier to deal with than pagination.
Scrolling is not intended for real time user requests, but rather for processing large amounts of data, e.g. in order to reindex the contents of one index into a new index with a different configuration.
Answer to the question in the comments:
So question would this be the right way to export large results for a
"report" type system? I'm not talking about frond end? I'm talking
about a back end application that will execute a custom query and
build a file with 300000 + result
I'm sure there might be a valid reasons for doing this, but to me it sounds like you're using a hammer to drive screws. Much of the point of using elasticsearch is to use it's aggregations features to do more of the computing in the data store.
Aggregations Documentation
If you really need the raw data of 300000 records, then thats what you need. However, if it's a report, that implies you're doing some manipulation of the data into metrics. Much of the point of ES is that it allows you to build "custom reports" on the fly. I suspect it will be much faster to put as much logic as you can into the query, rather simply manipulating the raw data.
Without knowing more about the requirements, I can't come up with any better answer than that.
No, Elastic so far does not support this. The Elastic API uses a traditional request/response model. The query results are paginated, buffered on the server-side, and sent back to the client. A truly read of the response body in a streaming fashion does not seem to be in the Elastic roadmap.
With that said, for big result sets the scroll API has been deprecated and was never intended for real-time user queries. At the moment the best option is the search_after that could be seen as a cursor in traditional RDBMS.

Resources