lua and methods, confusion - methods

i'm trying to figure out how to make methods for use in my code, and it's quite confusing to me
i tried using this code:
string.testfunc = function(s) print(s) end
a="foo"
a:testfunc() --inputting a non-string value into the function gives an error
>foo
i then tried this bit of code
table.testfunc = function(s) print(s[1]) end
a={1,2}
table.testfunc(a)
>1
a:testfunc() --this will always error, no matter the type of the varible
>method 'testfunc' is not callable (a nil value)
how come i can create a method in the string table and have it work fine with strings but not with tables? and how come making one with tables doesn't work?

The string library in Lua sets an index metamethod for all strings.
The table library in Lua does not set an index metamethod for all tables, because tables are used to represent objects. Typically objects of the same class share the same metatable.

Related

Local declaration of (built-in) Lua functions to reduce overhead

It is often said that one should re-declare (certain) Lua functions locally, as this reduces the overhead.
But what is the exact rule / principle behind this? How do I know for which functions this should be done and for which it is superfluous? Or should it be done for EVERY function, even your own?
Unfortunately I can't figure it out from the Lua manual.
The principle is that every time you write table.insert for example, the Lua interpreter looks up the "insert" entry in the table called table. Actually, it means _ENV.table.insert - _ENV is where the "global variables" are in Lua 5.2+. Lua 5.1 has something similar but it's not called _ENV. The interpreter looks up the string "table" in _ENV and then looks up the string "insert" in that table. Two table lookups every time you call table.insert, before the function actually gets called.
But if you put it in a local variable then the interpreter gets the function directly from the local variable, which is faster. It still has to look it up, to fill in the local variable.
It is superfluous if you only call the function once within the scope of the local variable, but that is pretty rare. There is no reason to do it for functions which are already declared as local. It also makes the code harder to read, so typically you won't do it except when it actually matters (in code that runs a lot of times).
My favorit tool for speed up things in Lua is to place all the useable stuff for a table in a metatable called: __index
A common example for this is the datatype: string
It has all string functions in his __index metatable as methods.
Therefore you can do things like that directly on a string...
print(('istaqsinaayok'):upper():reverse())
-- Output: KOYAANISQATSI
The Logic above...
The lookup for a method in a string fails directly and therefore the __index metamethod will be looked up for that method.
I like to implement same behaviour for the datatype number...
-- do debug.setmetatable() only once for all further defined/used numbers
math.pi = debug.setmetatable(math.pi, {__index = math})
-- From now numbers are objects ;-)
-- Lets output Pi but not using Pi this time
print((180):rad()) -- Pi calcing with method rad()
-- Output: 3.1415926535898
The Logic: If not exists then lookup __index
Is only one step behind: local
...imho.
Another Example, that works with this method...
-- koysenv.lua
_G = setmetatable(_G,
{ -- Metamethods
__index = {}, -- Table constructor
__name = 'Global Environment'
})
-- Reference whats in _G into __index
for key, value in pairs(_G) do
getmetatable(_G)['__index'][key] = value
end
-- Remove all whats in __index now from _G
for key, value in pairs(getmetatable(_G)['__index']) do
_G[key] = nil
end
return _G
When started as a last require it move all in _G into fresh created metatable method __index.
After that _G looks totally empty ;-P
...but the environment is working like nothing happen.
To add to what #user253751 already said:
Code Quality
Lua is a very flexible language. Other languages require you to import the parts of the standard library you use; Lua doesn't. Lua usually provides one global environment not to be polluted. If you play with the environment _ENV (setfenv/getfenv on Lua 5.1 / LuaJIT), you'll want to be able to still access Lua libraries. For that purpose you may to localize them before changing the environment; you can then use your "clean" environment for your module / API table / class / whatever. Another option here is to use metatables; metatable chains may quickly get hairy though and are likely to harm performance, as a failed table lookup is required each time to trigger indexing metamethods. localizing otherwise global variables can thus be seen as a way of importing them; to give a minimal & rough example:
local print = print -- localize ("import") everything we need first
_ENV = {} -- set environment to clean table for module
function hello() -- this writes to _ENV instead of _G
print("Hello World!")
end
hello() -- inside the environment, all variables set here are accessible
return _ENV -- "export" the API table
Performance
Very minor nitpick: Local variables aren't strictly always faster. In very extreme cases (i.e. lots of upvalues), indexing a table (which doesn't need an upvalue if it's the environment, the string metatable or the like) may actually be faster.
I imagine that localizing variables is required for many optimizations of optimizing compilers such as LuaJIT to be applicable though; otherwise Lua makes very little code. A global like print might as well be overwritten somewhere in a deep code path - thus the indexing operation has to be repeated every time; for a local on the other hand, the interpreter will has way more guarantees regarding its scope. It is thus able to detect constants that are only written to once, on initialization for instance; for globals very little code analysis is possible.

Is there a way to use a dynamic function name in Elixir from string interpolation like in Ruby?

I want to be able to construct a function call from a string in elixir. Is this possible? The equivalent ruby method call would be:
"uppercase".send("u#{:pcase}")
Although the answer by #fhdhsni is perfectly correct, I’d add some nitpicking clarification.
The exact equivalent of Kernel#send from ruby in elixir is impossible, because Kernel#send allows to call private methods on the receiver. In elixir, private functions do not ever exist in the compiled code.
If you meant Kernel#public_send, it might be achieved with Kernel.apply/3, as mentioned by #fhdhsni. The only correction is since the atom table is not garbage collected, and one surely wants to call an indeed existing function, it should be done with String.to_existing_atom/1.
apply(
String,
String.to_existing_atom("u#{:pcase}"),
["uppercase"]
)
Also, one might use macros during the compilation stage to generate respective clauses when the list of functions to call is predictable (when it’s not, the code already smells.)
defmodule Helper do
Enum.each(~w|upcase|a, fn fname ->
def unquote(fname)(param),
do: String.unquote(fname)(param)
# or
# defdelegate unquote(fname)(param), to: String
end)
end
Helper.upcase("uppercase")
#⇒ "UPPERCASE"
In Elixir module and function names are atoms. You can use apply to call them dynamically.
apply(String, String.to_atom("u#{:pcase}"), ["uppercase"]) # "UPPERCASE"
Depending on your use case it might not be a good idea to create atoms dynamically (since the atom table is not garbage collected).

Understanding immutable composite types with fields of mutable types in Julia

Initial note: I'm working in Julia, but this question probably applies to many languages.
Setup: I have a composite type as follows:
type MyType
x::Vector{String}
end
I write some methods to act on MyType. For example, I write a method that allows me to insert a new element in x, e.g. function insert!(d::MyType, itemToInsert::String).
Question: Should MyType be mutable or immutable?
My understanding: I've read the Julia docs on this, as well as more general (and highly upvoted) questions on Stackoverflow (e.g. here or here), but I still don't really have a good handle on what it means to be mutable/immutable from a practical perspective (especially for the case of an immutable composite type, containing a mutable array of immutable types!)
Nonetheless, here is my attempt: If MyType is immutable, then it means that the field x must always point to the same object. That object itself (a vector of Strings) is mutable, so it is perfectly okay for me to insert new elements into it. What I am not allowed to do is try and alter MyType so that the field x points to an entirely different object. For example, methods that do the following are okay:
MyType.x[1] = "NewValue"
push!(MyType.x, "NewElementToAdd")
But methods that do the following are not okay:
MyType.x = ["a", "different", "string", "array"]
Is this right? Also, is the idea that the object that an immutable types field values are locked to are those that are created within the constructor?
Final Point: I apologise if this appears to duplicate other questions on SO. As stated, I have looked through them and wasn't able to get the understanding that I was after.
So here is something mind bending to consider (at least to me):
julia> immutable Foo
data::Vector{Float64}
end
julia> x = Foo([1.0, 2.0, 4.0])
Foo([1.0,2.0,4.0])
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc3332018
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc296ac28
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc34809d8
So the data address is actually changing as the vector grows and needs to be reallocated! But - you can't change data yourself, as you point out.
I'm not sure there is a 100% right answer is really. I primarily use immutable for simple types like the Complex example in the docs in some performance critical situations, and I do it for "defensive programming" reasons, e.g. the code has no need to write to the fields of this type so I make it an error to do so. They are a good choice IMO whenever the type is a sort of an extension of a number, e.g. Complex, RGBColor, and I use them in place of tuples, as a kind of named tuple (tuples don't seem to perform well with Julia right now anyway, wheres immutable types perform excellently).

What do blocks do?

If someone could shed a light for me, or show an equivalent (if one exists) in PHP-style code, I'd really love it.
This piece of code:
require 'sqlite3'
SQLite3::Database.new("metadata.db").execute("SELECT * from BOOKS") do |row|
puts row
end
uses execute method to issue an SQL query. It's doing a loop, but on what? On the returned value of that query? Can you append a block of code to any expression and it will work on its return value? It seems like the loop isn't connected to anything, and |row| appears from nowhere.
For comparison, in PHP to access a database I would write
$db = new mysqli('details');
$results = $db->query("SELECT * FROM books");
while ($row = $results->fetch()) {
echo $row[0];
}
which says to create a database, store the results of a query as results, then start a loop in which each row of that result is turned into an array to be accessed with array notation. Is that not how Rubyists would do it? What's going on here?
It's doing a loop, but on what? On the returned value of that query?
Right. In your example row is whatever is generated by
SQLite3::Database.new("metadata.db").execute("SELECT * from BOOKS")
In this case row a reasonable thing to call this because any actions you do in the block will be based on that row from the db, but you can choose to call this 'block argument' anything you want.
Is this a thing that happens in Ruby, where you can immediately append a block of code to any expression and it'll work on its return value?
Not really, no. There are some methods that take block arguments - each is a good example.
If you have a collection of, say, cats at the animal hospital, you can loop through them and do operations on each cat because each takes a block argument.
#pretend these cats are objects and not just a string name
cats = [ "mrs. muffin face", "princess cupcake", "deathlord 666", ...]
cats.each do |cat|
#do stuff with each cat here. print their name, find their shoe size, etc
end
Blocks are a very fundamental ruby concept, so it's probably worth reading a bit more about them - this answer links to Why's (poignant) guide to ruby which is generally a good basic reference. I would also suggest Eloquent Ruby for more thorough examples of Ruby.
You seem to be assuming that a block is something that loops on a result, but that is not necessarily correct. A block in Ruby is opposed to arguments. Whereas arguments are evaluated before the execution of the main method, a block is not evaluated in advance. Whether to evaluate that block, under what bindings it is to be evaluated, what timing it is to be evaluated, and how many times it is to be evaluated, all is up to the main method. The block variable in | | is a parameter that the main method passes to the block. Often, elements of the value the main method would have returned without the block are passed one after another, which is the case you had in mind, but that is not always the case.
Here is how execute might be coded in Ruby
class SQLite3::Database
def execute(query_str)
results = db.query(query_str)
while (row = results.fetch)
yield row
end
end
end
(assuming db.query and results.fetch work as you would expect from PHP). As you can see, this is nearly identical to what you're used to from PHP except for that weird yield. As the method loops through the rows of the result, yield passes each row to the block.
This lets you focus on the important stuff (what to do with each row) while hiding away the incidental details (like iterating over a result variable).

Groovy 1.8 :: LINQ Applied

UPDATE 8/31/2011
Guillaume Laforge has nearly done it:
http://gaelyk.appspot.com/tutorial/app-engine-shortcuts#query
Looks like he's doing an AST transform to pull off the:
alias as Entity
bit. Cool stuff, Groovy 1.8 + AST transform = LINQ-esque queries on the JVM. GL's solution needs more work as far as I can see to pull off full query capabilities (like sub queries, join using(field) syntax and the like), but for his Gaelyk project apparently not necessary.
EDIT
As a workaround to achieving pure LINQ syntax, I have decided to def the aliases. Not a huge deal, and removes a major hurdle that would likely require complex AST transforms to pull off.
So, instead of:
from c as Composite
join t as Teams
...
I now define the aliases (note: need to cast to get auto complete on fields):
def(Teams t,Composite c,Schools s) = [Teams.new(),Composite.new(),Schools.new()]
and use map syntax for from, join, etc.
from c:Composite
join t:Teams
...
To solve issue #2 (see original below), add instance level getProperty methods to each pogo alias (whose scope is limited to ORM closure in which it is called, nice). We just return the string property name as we're building an sql statement.
[t,c,s].each{Object o-> o.metaClass.getProperty = { String k-> k } }
Making "good" progress ;-)
Now to figure out what to do about "=", that is tricky since set property is void. May have to go with eq, neq, gt, etc. but would really prefer the literal symbols, makes for closer-to-sql readability.
If interested, LINQ is doing quite a bit behind the scenes. Jon Skeet (praise his name) has a nice SO reply:
How LINQ works internally?
ORIGINAL
Have been checking out LINQ, highly impressed.
// LINQ example
var games =
from t in Teams
from g in t.Games
where g.gameID = 212
select new { g.gameDate,g.gameTime };
// Seeking Groovy Nirvana
latest { Integer teamID->
from c as Composite
join t as Teams
join s as Schools on ( schoolID = {
from Teams
where t.schoolID = s.schoolID } )
where t.teamID = "$teamID"
select c.location, c.gameType, s.schoolName
group c.gameID
order c.gameDate, c.gameTime
}
The proposed Groovy version compiles fine and if I def the aliases c,t,s with their corresponding POGO, I get strong typed IDE auocomplete on fields, nice. However, nowhere near LINQ, where there are no (visible) variable definitions other than the query itself, totally self contained and strongly typed, wow.
OK, so can it be done in Groovy? I think (hope) yes, but am hung up on 2 issues:
1) How to implicitly populate alias variable without def'ing? Currently I am overriding asType() on String so in "from c as Composite", c gets cast to Composite. Great, but the IDE "thinks" that in closure scope undefined c is a string and thus no autocomplete on POGO fields ;-(
2) Since #1 is not solved, I am def'ing the aliases as per above so I can get autocomplete. Fine, hacked (compared to LINQ), but does the trick. Problem here is that in "select c.location, c.gameType...", I'd like the fields to not be evaluated but simply return "c.location" to the ORM select method, and not null (which is its default value). getProperty() should work here, but I need it to only apply to pogo fields when called from ORM scope (e.g. orm field specific methods like select, order, group, etc.). Bit lost there, perhaps there's a way to annotate orm methods, or only invoke "special" pogo getProperty via orm method calls (which is the closure's delegate in above nirvana query).
Should point out that I am not looking to create a comprehensive LINQ for Groovy, but this one particular subset of LINQ I would love to see happen.
One of the biggest reasons for Guillaume to use an AST transform is because of the problem with "=". Even if you use == for the compare as normally done in Groovy, from the compareTo method that is called for it, you cannot make out a difference between ==, !=, <=, >=, <, >. There are two possible paths for this in later versions of Groovy that are in discussion. One is to use for each of those compares a different method, the other is to store a minimal AST which you can access at runtime. This goes in the direction of C# and is a quite powerful tool. The problem is more about how to do this efficiently.

Resources