Finding the minimum weight circuit that passes through vertices u and v - algorithm

I have an undirected and connected (not complete) graph of vertices, where u and v can be any 2 distinct vertices. I want to construct the minimum weight circuit that starts from a vertex u, passes through v, then returns back to u without repeating any edges. Can this be done by doing the following?
Finding the shortest path from u to v - call this p1
Removing all constituent edges of p1 from the graph
Finding the new shortest path from v to u - call this p2
Returning all deleted edges to the graph, and concatenating p1 and p2 together - call this c1
Is c1 the minimum weight circuit that can be constructed, considering the constraint of passing through both u and v? If so, how can I prove it, if not, why not?
It seems to make sense to me, as all the paths contained within c1 are also shortest paths themselves, however I can't quite shake the feeling that I might be missing something.
EDIT: I have changed "fully connected graph" to "connected graph". "fully" implied that the graph is complete, which is not what I meant.

Here is a counterexample:
In a case of complete graph, assume all edges not shown in the picture to have some large weight (like 1000).
The p1 would find the shortest path 1 - 1 - 1 and exclude it, prohibiting the actual answer of 3 - 1 + 1 - 3.
As suggested by Falk Hüffner, this task can be solved by Edge disjoint shortest pair algorithm.

If I understand correctly, this is equivalent to finding two edge-disjoint paths from u to v while minimizing their total weight. This is a special case of Minimum Cost Flow with a flow of two, so it can be solved in polynomial time and is likely not NP-hard. Suurballe's algorithm solves it for directed graphs, and it should be possible to adapt it to undirected graphs (it seems that this Wikipedia page is attempting to do this).

Related

Path double cover, recursion set up

I'm working on path double cover problem. I have undirected connected graph G and and I change every edge to 2 directed edges and each of them is in opposite direction. Then the goal is to find set of paths(no loops) in this directed graph so that every vertex is used once as start of path and once as end of another path. Each of directed edges are used exactly once.
undirected graph G
directed graph G
For this example there is set of paths P={(1,2,4),(4,3,1),(2,1,3),(3,4,2)}.
There are currently known 2 graphs K3 and K5 (fully connected graphs with 3 and 5 vertices) which cannot be covered in this way.
I want to make script which will find me this covering or tell me if there isn't one. I tried to generate all possible paths and then search in them but for bigger graph this approach isn't usable (n! complexity). I don't know how to set up the recursion so I can keep track of what I've used. I don't care about time complexity but it would be awesome if you had any tip for doing it more quickly. :D
Thanks for any suggestions. :D
Your definition is a bit confusing- you say that you need to find a set of paths (no loops) in the directed graph, with 1 outgoing edge per vertex. There is no way for these edges not to form a loop (at most n - 1 edges can be tree edges).
I'm going to assume that you instead mean "only one cycle; no subcycles".
In that case, your task becomes that of determining whether your graph has a Hamiltonian Cycle or not.
We can use Ore's Theorem as a quick check:
If deg v + deg w ≥ n for every pair of distinct non-adjacent vertices v and w of G then G is Hamiltonian.
Note that this says "if" and not "iif" / "if and only if", so a graph be Hamiltonian, and not satisfy this check.
To take things one step further, we can use the Bondy–Chvátal theorem:
A graph is Hamiltonian if and only if its closure is Hamiltonian.
And we obtain its closure in a similar method to what we did for Ore's Theorem check- we repeatedly add a new edge connecting a nonadjacent pair of vertices u and v with deg(v) + deg(u) ≥ n until no more pairs with this property can be found.
Once this is done, we check whether the closure is Hamiltonian. If the closure is a complete graph, then it is Hamiltonian. I was unable to find any proof that the closure will be complete iif the graph g is Hamiltonian, however it does seem to happen with every example graph I can conjure up, so at least it may be a stronger correlation than Ore's Theorem.
In the end, you just need to determine if the graph has Hamiltonian Cycle. I've listed above two ways you can perform quadratic-time checks to positively identify some of such graph (maybe all, again- not sure of the completeness of the closure bit).

Does there exist a shortest path which goes through a group of vertices U

The problem is finding a shortest path between two vertices in a directed graph
converting edges which enter vertices (u in U) to two edges and converting edges which enter non u vertices into 3 edges, effectively making the path through u vertices shorter than non u vertices. if there exists a shortest path of equal length which goes through all u in U.
the idea is to then run the BFS algorithm once and check whether the shortest path contains all edges in u and is of equal length to the shortest path between s and t (taking all the multiplied edges into account).
EDIT: sorry, forgot to ask the question, is this algorithm correct?
The idea of your algorithm can work. Namely that you run BFS to find the shortest path, then run BFS again on an altered graph that makes it better to go through U. BUT the way that you described altering it may shift what the best path is.
Here is the issue. Suppose that P1 is a best path with more steps that goes through all of U, while P2 is a good path that goes through one expensive hop from U to U, before alteration P1 may be better than P2 but after you change the weights, P2 is better than P1. And so you find P2 the second time, it doesn't go through all of U, and you wrongly conclude that P1 doesn't exist.
To fix it, you have to set a fixed reward for entering/leaving U. Same change in all edge weights. Now the more nodes of U that a path goes through, the better it is, but you have not changed the relative value of two paths that go through the same number of nodes of U. And now your reasoning works with no gotchas.
OP here, I've managed to prove the algorithm since posting the question.
proof:
if there exist shortest paths P1,P2,P3...Pn then after augmenting the graph by multiplying edges which enter non U vertices by 3 and edges which enter U vertices by 2 (I later realized the augmentation can be 2 and 1) the lengths of the shortest paths would be:
3 * |Pi| - |{u | u in Pi}|
the number of edges in the path times 3 minus the number of vertices in the path which are in U.
clearly now the shortest path is that which minimizes 3 * |Pi| - |{u | u in Pi}|
but 3*|Pi| is a constant for all shortest paths so we actually want to maximize |{u | u in Pi}|
which means that we'll want to pass through as many vertices in u as possible so if by using BFS and recovering the shortest path we find that it doesn't contain all vertices in U we can certainly say that such a path doesn't exist, if we do find that there's a path which goes through all vertices in U we must check it's length (after restoring it to be a path in the original graph) we can simply check if it's length is the length of a shortest path between s and t if yes then it's a path which goes through all vertices in U and is a shortest path, if not then clearly it isn't.

Why priority-queue based Dijkstra shortest-path algorithm cannot work for negative-weights graph? [duplicate]

Can somebody tell me why Dijkstra's algorithm for single source shortest path assumes that the edges must be non-negative.
I am talking about only edges not the negative weight cycles.
Recall that in Dijkstra's algorithm, once a vertex is marked as "closed" (and out of the open set) - the algorithm found the shortest path to it, and will never have to develop this node again - it assumes the path developed to this path is the shortest.
But with negative weights - it might not be true. For example:
A
/ \
/ \
/ \
5 2
/ \
B--(-10)-->C
V={A,B,C} ; E = {(A,C,2), (A,B,5), (B,C,-10)}
Dijkstra from A will first develop C, and will later fail to find A->B->C
EDIT a bit deeper explanation:
Note that this is important, because in each relaxation step, the algorithm assumes the "cost" to the "closed" nodes is indeed minimal, and thus the node that will next be selected is also minimal.
The idea of it is: If we have a vertex in open such that its cost is minimal - by adding any positive number to any vertex - the minimality will never change.
Without the constraint on positive numbers - the above assumption is not true.
Since we do "know" each vertex which was "closed" is minimal - we can safely do the relaxation step - without "looking back". If we do need to "look back" - Bellman-Ford offers a recursive-like (DP) solution of doing so.
Consider the graph shown below with the source as Vertex A. First try running Dijkstra’s algorithm yourself on it.
When I refer to Dijkstra’s algorithm in my explanation I will be talking about the Dijkstra's Algorithm as implemented below,
So starting out the values (the distance from the source to the vertex) initially assigned to each vertex are,
We first extract the vertex in Q = [A,B,C] which has smallest value, i.e. A, after which Q = [B, C]. Note A has a directed edge to B and C, also both of them are in Q, therefore we update both of those values,
Now we extract C as (2<5), now Q = [B]. Note that C is connected to nothing, so line16 loop doesn't run.
Finally we extract B, after which . Note B has a directed edge to C but C isn't present in Q therefore we again don't enter the for loop in line16,
So we end up with the distances as
Note how this is wrong as the shortest distance from A to C is 5 + -10 = -5, when you go .
So for this graph Dijkstra's Algorithm wrongly computes the distance from A to C.
This happens because Dijkstra's Algorithm does not try to find a shorter path to vertices which are already extracted from Q.
What the line16 loop is doing is taking the vertex u and saying "hey looks like we can go to v from source via u, is that (alt or alternative) distance any better than the current dist[v] we got? If so lets update dist[v]"
Note that in line16 they check all neighbors v (i.e. a directed edge exists from u to v), of u which are still in Q. In line14 they remove visited notes from Q. So if x is a visited neighbour of u, the path is not even considered as a possible shorter way from source to v.
In our example above, C was a visited neighbour of B, thus the path was not considered, leaving the current shortest path unchanged.
This is actually useful if the edge weights are all positive numbers, because then we wouldn't waste our time considering paths that can't be shorter.
So I say that when running this algorithm if x is extracted from Q before y, then its not possible to find a path - which is shorter. Let me explain this with an example,
As y has just been extracted and x had been extracted before itself, then dist[y] > dist[x] because otherwise y would have been extracted before x. (line 13 min distance first)
And as we already assumed that the edge weights are positive, i.e. length(x,y)>0. So the alternative distance (alt) via y is always sure to be greater, i.e. dist[y] + length(x,y)> dist[x]. So the value of dist[x] would not have been updated even if y was considered as a path to x, thus we conclude that it makes sense to only consider neighbors of y which are still in Q (note comment in line16)
But this thing hinges on our assumption of positive edge length, if length(u,v)<0 then depending on how negative that edge is we might replace the dist[x] after the comparison in line18.
So any dist[x] calculation we make will be incorrect if x is removed before all vertices v - such that x is a neighbour of v with negative edge connecting them - is removed.
Because each of those v vertices is the second last vertex on a potential "better" path from source to x, which is discarded by Dijkstra’s algorithm.
So in the example I gave above, the mistake was because C was removed before B was removed. While that C was a neighbour of B with a negative edge!
Just to clarify, B and C are A's neighbours. B has a single neighbour C and C has no neighbours. length(a,b) is the edge length between the vertices a and b.
Dijkstra's algorithm assumes paths can only become 'heavier', so that if you have a path from A to B with a weight of 3, and a path from A to C with a weight of 3, there's no way you can add an edge and get from A to B through C with a weight of less than 3.
This assumption makes the algorithm faster than algorithms that have to take negative weights into account.
Correctness of Dijkstra's algorithm:
We have 2 sets of vertices at any step of the algorithm. Set A consists of the vertices to which we have computed the shortest paths. Set B consists of the remaining vertices.
Inductive Hypothesis: At each step we will assume that all previous iterations are correct.
Inductive Step: When we add a vertex V to the set A and set the distance to be dist[V], we must prove that this distance is optimal. If this is not optimal then there must be some other path to the vertex V that is of shorter length.
Suppose this some other path goes through some vertex X.
Now, since dist[V] <= dist[X] , therefore any other path to V will be atleast dist[V] length, unless the graph has negative edge lengths.
Thus for dijkstra's algorithm to work, the edge weights must be non negative.
Dijkstra's Algorithm assumes that all edges are positive weighted and this assumption helps the algorithm run faster ( O(E*log(V) ) than others which take into account the possibility of negative edges (e.g bellman ford's algorithm with complexity of O(V^3)).
This algorithm wont give the correct result in the following case (with a -ve edge) where A is the source vertex:
Here, the shortest distance to vertex D from source A should have been 6. But according to Dijkstra's method the shortest distance will be 7 which is incorrect.
Also, Dijkstra's Algorithm may sometimes give correct solution even if there are negative edges. Following is an example of such a case:
However, It will never detect a negative cycle and always produce a result which will always be incorrect if a negative weight cycle is reachable from the source, as in such a case there exists no shortest path in the graph from the source vertex.
Try Dijkstra's algorithm on the following graph, assuming A is the source node and D is the destination, to see what is happening:
Note that you have to follow strictly the algorithm definition and you should not follow your intuition (which tells you the upper path is shorter).
The main insight here is that the algorithm only looks at all directly connected edges and it takes the smallest of these edge. The algorithm does not look ahead. You can modify this behavior , but then it is not the Dijkstra algorithm anymore.
You can use dijkstra's algorithm with negative edges not including negative cycle, but you must allow a vertex can be visited multiple times and that version will lose it's fast time complexity.
In that case practically I've seen it's better to use SPFA algorithm which have normal queue and can handle negative edges.
Recall that in Dijkstra's algorithm, once a vertex is marked as "closed" (and out of the open set) -it assumes that any node originating from it will lead to greater distance so, the algorithm found the shortest path to it, and will never have to develop this node again, but this doesn't hold true in case of negative weights.
The other answers so far demonstrate pretty well why Dijkstra's algorithm cannot handle negative weights on paths.
But the question itself is maybe based on a wrong understanding of the weight of paths. If negative weights on paths would be allowed in pathfinding algorithms in general, then you would get permanent loops that would not stop.
Consider this:
A <- 5 -> B <- (-1) -> C <- 5 -> D
What is the optimal path between A and D?
Any pathfinding algorithm would have to continuously loop between B and C because doing so would reduce the weight of the total path. So allowing negative weights for a connection would render any pathfindig algorithm moot, maybe except if you limit each connection to be used only once.
So, to explain this in more detail, consider the following paths and weights:
Path | Total weight
ABCD | 9
ABCBCD | 7
ABCBCBCD | 5
ABCBCBCBCD | 3
ABCBCBCBCBCD | 1
ABCBCBCBCBCBCD | -1
...
So, what's the perfect path? Any time the algorithm adds a BC step, it reduces the total weight by 2.
So the optimal path is A (BC) D with the BC part being looped forever.
Since Dijkstra's goal is to find the optimal path (not just any path), it, by definition, cannot work with negative weights, since it cannot find the optimal path.
Dijkstra will actually not loop, since it keeps a list of nodes that it has visited. But it will not find a perfect path, but instead just any path.
Adding few points to the explanation, on top of the previous answers, for the following simple example,
Dijktra's algorithm being greedy, it first finds the minimum distance vertex C from the source vertex A greedily and assigns the distance d[C] (from vertex A) to the weight of the edge AC.
The underlying assumption is that since C was picked first, there is no other vertex V in the graph s.t. w(AV) < w(AC), otherwise V would have been picked instead of C, by the algorithm.
Since by above logic, w(AC) <= w(AV), for all vertex V different from the vertices A and C. Now, clearly any other path P that starts from A and ends in C, going through V , i.e., the path P = A -> V -> ... -> C, will be longer in length (>= 2) and total cost of the path P will be sum of the edges on it, i.e., cost(P) >= w(AV) >= w(AC), assuming all edges on P have non-negative weights, so that
C can be safely removed from the queue Q, since d[C] can never get smaller / relaxed further under this assumption.
Obviously, the above assumption does not hold when some.edge on P is negative, in a which case d[C] may decrease further, but the algorithm can't take care of this scenario, since by that time it has removed C from the queue Q.
In Unweighted graph
Dijkstra can even work without set or priority queue, even if you just use STACK the algorithm will work but with Stack its time of execution will increase
Dijkstra don't repeat a node once its processed becoz it always tooks the minimum route , which means if you come to that node via any other path it will certainly have greater distance
For ex -
(0)
/
6 5
/
(2) (1)
\ /
4 7
\ /
(9)
here once you get to node 1 via 0 (as its minimum out of 5 and 6)so now there is no way you can get a minimum value for reaching 1
because all other path will add value to 5 and not decrease it
more over with Negative weights it will fall into infinite loop
In Unweighted graph
Dijkstra Algo will fall into loop if it has negative weight
In Directed graph
Dijkstra Algo will give RIGHT ANSWER except in case of Negative Cycle
Who says Dijkstra never visit a node more than once are 500% wrong
also who says Dijkstra can't work with negative weight are wrong

Why doesn't Dijkstra's algorithm work for negative weight edges?

Can somebody tell me why Dijkstra's algorithm for single source shortest path assumes that the edges must be non-negative.
I am talking about only edges not the negative weight cycles.
Recall that in Dijkstra's algorithm, once a vertex is marked as "closed" (and out of the open set) - the algorithm found the shortest path to it, and will never have to develop this node again - it assumes the path developed to this path is the shortest.
But with negative weights - it might not be true. For example:
A
/ \
/ \
/ \
5 2
/ \
B--(-10)-->C
V={A,B,C} ; E = {(A,C,2), (A,B,5), (B,C,-10)}
Dijkstra from A will first develop C, and will later fail to find A->B->C
EDIT a bit deeper explanation:
Note that this is important, because in each relaxation step, the algorithm assumes the "cost" to the "closed" nodes is indeed minimal, and thus the node that will next be selected is also minimal.
The idea of it is: If we have a vertex in open such that its cost is minimal - by adding any positive number to any vertex - the minimality will never change.
Without the constraint on positive numbers - the above assumption is not true.
Since we do "know" each vertex which was "closed" is minimal - we can safely do the relaxation step - without "looking back". If we do need to "look back" - Bellman-Ford offers a recursive-like (DP) solution of doing so.
Consider the graph shown below with the source as Vertex A. First try running Dijkstra’s algorithm yourself on it.
When I refer to Dijkstra’s algorithm in my explanation I will be talking about the Dijkstra's Algorithm as implemented below,
So starting out the values (the distance from the source to the vertex) initially assigned to each vertex are,
We first extract the vertex in Q = [A,B,C] which has smallest value, i.e. A, after which Q = [B, C]. Note A has a directed edge to B and C, also both of them are in Q, therefore we update both of those values,
Now we extract C as (2<5), now Q = [B]. Note that C is connected to nothing, so line16 loop doesn't run.
Finally we extract B, after which . Note B has a directed edge to C but C isn't present in Q therefore we again don't enter the for loop in line16,
So we end up with the distances as
Note how this is wrong as the shortest distance from A to C is 5 + -10 = -5, when you go .
So for this graph Dijkstra's Algorithm wrongly computes the distance from A to C.
This happens because Dijkstra's Algorithm does not try to find a shorter path to vertices which are already extracted from Q.
What the line16 loop is doing is taking the vertex u and saying "hey looks like we can go to v from source via u, is that (alt or alternative) distance any better than the current dist[v] we got? If so lets update dist[v]"
Note that in line16 they check all neighbors v (i.e. a directed edge exists from u to v), of u which are still in Q. In line14 they remove visited notes from Q. So if x is a visited neighbour of u, the path is not even considered as a possible shorter way from source to v.
In our example above, C was a visited neighbour of B, thus the path was not considered, leaving the current shortest path unchanged.
This is actually useful if the edge weights are all positive numbers, because then we wouldn't waste our time considering paths that can't be shorter.
So I say that when running this algorithm if x is extracted from Q before y, then its not possible to find a path - which is shorter. Let me explain this with an example,
As y has just been extracted and x had been extracted before itself, then dist[y] > dist[x] because otherwise y would have been extracted before x. (line 13 min distance first)
And as we already assumed that the edge weights are positive, i.e. length(x,y)>0. So the alternative distance (alt) via y is always sure to be greater, i.e. dist[y] + length(x,y)> dist[x]. So the value of dist[x] would not have been updated even if y was considered as a path to x, thus we conclude that it makes sense to only consider neighbors of y which are still in Q (note comment in line16)
But this thing hinges on our assumption of positive edge length, if length(u,v)<0 then depending on how negative that edge is we might replace the dist[x] after the comparison in line18.
So any dist[x] calculation we make will be incorrect if x is removed before all vertices v - such that x is a neighbour of v with negative edge connecting them - is removed.
Because each of those v vertices is the second last vertex on a potential "better" path from source to x, which is discarded by Dijkstra’s algorithm.
So in the example I gave above, the mistake was because C was removed before B was removed. While that C was a neighbour of B with a negative edge!
Just to clarify, B and C are A's neighbours. B has a single neighbour C and C has no neighbours. length(a,b) is the edge length between the vertices a and b.
Dijkstra's algorithm assumes paths can only become 'heavier', so that if you have a path from A to B with a weight of 3, and a path from A to C with a weight of 3, there's no way you can add an edge and get from A to B through C with a weight of less than 3.
This assumption makes the algorithm faster than algorithms that have to take negative weights into account.
Correctness of Dijkstra's algorithm:
We have 2 sets of vertices at any step of the algorithm. Set A consists of the vertices to which we have computed the shortest paths. Set B consists of the remaining vertices.
Inductive Hypothesis: At each step we will assume that all previous iterations are correct.
Inductive Step: When we add a vertex V to the set A and set the distance to be dist[V], we must prove that this distance is optimal. If this is not optimal then there must be some other path to the vertex V that is of shorter length.
Suppose this some other path goes through some vertex X.
Now, since dist[V] <= dist[X] , therefore any other path to V will be atleast dist[V] length, unless the graph has negative edge lengths.
Thus for dijkstra's algorithm to work, the edge weights must be non negative.
Dijkstra's Algorithm assumes that all edges are positive weighted and this assumption helps the algorithm run faster ( O(E*log(V) ) than others which take into account the possibility of negative edges (e.g bellman ford's algorithm with complexity of O(V^3)).
This algorithm wont give the correct result in the following case (with a -ve edge) where A is the source vertex:
Here, the shortest distance to vertex D from source A should have been 6. But according to Dijkstra's method the shortest distance will be 7 which is incorrect.
Also, Dijkstra's Algorithm may sometimes give correct solution even if there are negative edges. Following is an example of such a case:
However, It will never detect a negative cycle and always produce a result which will always be incorrect if a negative weight cycle is reachable from the source, as in such a case there exists no shortest path in the graph from the source vertex.
Try Dijkstra's algorithm on the following graph, assuming A is the source node and D is the destination, to see what is happening:
Note that you have to follow strictly the algorithm definition and you should not follow your intuition (which tells you the upper path is shorter).
The main insight here is that the algorithm only looks at all directly connected edges and it takes the smallest of these edge. The algorithm does not look ahead. You can modify this behavior , but then it is not the Dijkstra algorithm anymore.
You can use dijkstra's algorithm with negative edges not including negative cycle, but you must allow a vertex can be visited multiple times and that version will lose it's fast time complexity.
In that case practically I've seen it's better to use SPFA algorithm which have normal queue and can handle negative edges.
Recall that in Dijkstra's algorithm, once a vertex is marked as "closed" (and out of the open set) -it assumes that any node originating from it will lead to greater distance so, the algorithm found the shortest path to it, and will never have to develop this node again, but this doesn't hold true in case of negative weights.
The other answers so far demonstrate pretty well why Dijkstra's algorithm cannot handle negative weights on paths.
But the question itself is maybe based on a wrong understanding of the weight of paths. If negative weights on paths would be allowed in pathfinding algorithms in general, then you would get permanent loops that would not stop.
Consider this:
A <- 5 -> B <- (-1) -> C <- 5 -> D
What is the optimal path between A and D?
Any pathfinding algorithm would have to continuously loop between B and C because doing so would reduce the weight of the total path. So allowing negative weights for a connection would render any pathfindig algorithm moot, maybe except if you limit each connection to be used only once.
So, to explain this in more detail, consider the following paths and weights:
Path | Total weight
ABCD | 9
ABCBCD | 7
ABCBCBCD | 5
ABCBCBCBCD | 3
ABCBCBCBCBCD | 1
ABCBCBCBCBCBCD | -1
...
So, what's the perfect path? Any time the algorithm adds a BC step, it reduces the total weight by 2.
So the optimal path is A (BC) D with the BC part being looped forever.
Since Dijkstra's goal is to find the optimal path (not just any path), it, by definition, cannot work with negative weights, since it cannot find the optimal path.
Dijkstra will actually not loop, since it keeps a list of nodes that it has visited. But it will not find a perfect path, but instead just any path.
Adding few points to the explanation, on top of the previous answers, for the following simple example,
Dijktra's algorithm being greedy, it first finds the minimum distance vertex C from the source vertex A greedily and assigns the distance d[C] (from vertex A) to the weight of the edge AC.
The underlying assumption is that since C was picked first, there is no other vertex V in the graph s.t. w(AV) < w(AC), otherwise V would have been picked instead of C, by the algorithm.
Since by above logic, w(AC) <= w(AV), for all vertex V different from the vertices A and C. Now, clearly any other path P that starts from A and ends in C, going through V , i.e., the path P = A -> V -> ... -> C, will be longer in length (>= 2) and total cost of the path P will be sum of the edges on it, i.e., cost(P) >= w(AV) >= w(AC), assuming all edges on P have non-negative weights, so that
C can be safely removed from the queue Q, since d[C] can never get smaller / relaxed further under this assumption.
Obviously, the above assumption does not hold when some.edge on P is negative, in a which case d[C] may decrease further, but the algorithm can't take care of this scenario, since by that time it has removed C from the queue Q.
In Unweighted graph
Dijkstra can even work without set or priority queue, even if you just use STACK the algorithm will work but with Stack its time of execution will increase
Dijkstra don't repeat a node once its processed becoz it always tooks the minimum route , which means if you come to that node via any other path it will certainly have greater distance
For ex -
(0)
/
6 5
/
(2) (1)
\ /
4 7
\ /
(9)
here once you get to node 1 via 0 (as its minimum out of 5 and 6)so now there is no way you can get a minimum value for reaching 1
because all other path will add value to 5 and not decrease it
more over with Negative weights it will fall into infinite loop
In Unweighted graph
Dijkstra Algo will fall into loop if it has negative weight
In Directed graph
Dijkstra Algo will give RIGHT ANSWER except in case of Negative Cycle
Who says Dijkstra never visit a node more than once are 500% wrong
also who says Dijkstra can't work with negative weight are wrong

Reduction algorithm from the Hamiltonian cycle

I believe that the Hamiltonian cycle problem can be summed up as the following:
Given an undirected graph G = (V, E), a
Hamiltonian circuit is a tour in G passing through
every vertex of G once and only once.
Now, what I would like to do is reduce my problem to this. My problem is:
Given a weighted undirected graph G, integer k, and vertices u, v
both in G, is there a simple path in G from u to v
with total weight of AT LEAST k?
So knowing that the Hamiltonian cycle problem is NP-complete, by reducing this problem to the Hamiltonian, this problem is also proved NP-complete. My issue is the function reducing it to Hamiltonian.
The big issue is that the Hamiltonian problem does not deal with edge weights, so I must convert my graph to one that doesn't have any weights.
On top of that, this problem has a designated start and finish (u and v), whereas the Hamiltonian finds a cycle, so any start is the same as the finish.
For (1), I am thinking along the lines of passing a graph with all simple paths of total weight LESS THAN k taken out.
For (2), I am thinking that this is not really an issue, because if there is a Hamiltonian cycle, then the simple path from u to v can be sliced out of it.
So, my real questions are:
Is my solution going to give me the right answer?
If yes, then how can I take out the edges that will produce simple paths of total weight less than k WITHOUT affecting the possibility that one of those edges may be required for the actual solution? Because if an edge e is taken out because it produces a simple path of weight < k for a subset of E, it can still be used in a simple path with a different combination of edges to produce a path of weight >= k.
Thanks!
Your reduction is in the wrong direction. To show that your problem is NP-complete, you need to reduce Hamilton Circuit to it, and that is very easy. I.e. show that every Hamilton Circuit problem can be expressed in terms of your problem variant.
More of a hint than an answer:
A unweighted graph can be interpreted as a weighted graph where each edge has weight 1. What would the cost of a Hamiltonian cycle be in a graph like that?
The part about the mismatch between cycles and paths is correct and is a problem you need to solve. Basically you need to prove that the Hamiltonian Path problem is also NP complete (a relatively straightfoward reduction to the Cycle problem)
As for the other part, you are doing things in the wrong direction. You need to show that your more complicated problem can solve the Hamiltonian Path problem (and is thus NP-hard). To do this you just basically have to use the special case of unit-cost edges.

Resources