#Transactional has no effect on JpaRepository - spring-boot

I have a parent transaction at controller layer, but I want to start a new transaction when I call a repository, to achieve this I tried annotating Repository interface as below
#Transactional(isolation = Isolation.READ_COMMITTED, propagation = Propagation.REQUIRES_NEW)
public interface EventRepo extends JpaRepository<Event, Integer>{ }
However this seems to not start a new transaction upon calls to EventRepo#save. Why?
Here is my service layer.
public interface IApplicationService {
void save(Event event);
}
#Service
public class ApplicationService implements IApplicationService {
#Autowired
private EventRepo eventRepo;
#Override
public void save(Event event) {
eventRepo.save(event);
}
}
It is in turn called from controller layer
#RequestMapping(value="/{indicator}", method=RequestMethod.POST)
#Transactional(isolation = Isolation.READ_COMMITTED, propagation = Propagation.REQUIRES_NEW)
#ResponseBody
public String processRequest(#PathVariable Integer indicator) {
Event event = new Event("Student1");
service.save(event);
if(indicator != 0) {
throw new RuntimeException();
}
return "Success";
}
However everything works perfectly if I annotate Service interface with #Transactional
#Transactional(isolation = Isolation.READ_COMMITTED, propagation = Propagation.REQUIRES_NEW)
public interface IApplicationService {
void save(Event event);
}
When I say working what is mean is, if I run the below curl commands I will see 2 rows in h2 db for Event entity
curl -X POST http://localhost:8080/1
curl -X POST http://localhost:8080/0
I understand it is good to control transactions at Service layer then repository or controller layer, constructing situation this way makes it easy to demonstrate the problem.
Spring boot starter version is 2.5.6
below dependencie have versions managed by springboot starter
spring-boot-starter-data-jpa
spring-boot-starter-web
lombok
h2
Here is a thread that suggests it should be ok to annotate Repository layer although discourages it.
#Transactional on a JpaRepository

In this Spring article we can read the following:
Additionally, we can get rid of the #Transactional annotation for the method as the CRUD methods of the Spring Data JPA repository implementation are already annotated with #Transactional.
To me, this means that whatever #Transactional annotation you add to your EventRepo will be overridden by the #Transactional annotation mentioned above in the CRUD methods. Having said that, I really doubt #Transactional annotation has any effect in JpaRepository methods. It would have in your own custom methods, but it seems to me that it has none in the inherited methods.

In order to apply your own transactional settings in EventRepo#save override the save method:
#Transactional(isolation = Isolation.READ_COMMITTED, propagation = Propagation.REQUIRES_NEW)
public interface EventRepo extends JpaRepository<Event, Integer>{
#Override
Event save(Event event);
}
Explanation
Spring ignores your #Transactional annotation because it cannot find the save method in the EventRepo proxy and applies the default transaction settings from the parent CrudRepository interface.
Further reading: How Does Spring #Transactional Really Work?

Related

Transactional and Stream in Spring

I try to understand why this code doesn't work
In component:
#PostConstruct
public void runAtStart(){
testStream();
}
#Transactional(readOnly = true)
public void testStream(){
try(Stream<Person> top10ByFirstName = personRepository.findTop10ByFirstName("Tom")){
top10ByFirstName.forEach(System.out::println);
}
}
And repository :
public interface PersonRepository extends JpaRepository<Person, Long> {
Stream<Person> findTop10ByFirstName(String firstName);
}
I get:
org.springframework.dao.InvalidDataAccessApiUsageException: You're trying to execute a streaming query method without a surrounding transaction that keeps the connection open so that the Stream can actually be consumed. Make sure the code consuming the stream uses #Transactional or any other way of declaring a (read-only) transaction.
One key thing about Spring is that many annotated features use proxies to provide the annotation functionality. That is #Transactional, #Cacheable and #Async all rely on Spring detecting those annotations and wrapping those beans in a proxy bean.
That being the case, a proxied method can only be used when invoked on the class and not from within the class. See this about the topic.
Try:
Refactoring and call this #Transactional method from another class in your context, or
By self-autowiring the class into itself and calling the #Transactional method that way.
To demonstrate (1):
public class MyOtherClass {
#Autowired
private MyTestStreamClass myTestStreamClass;
#PostConstruct
public void runAtStart(){
// This will invoke the proxied interceptors for `#Transactional`
myTestStreamClass.testStream();
}
}
To demonstrate (2):
#Component
public class MyTestStreamClass {
#Autowired
private MyTestStreamClass myTestStreamClass;
#PostConstruct
public void runAtStart(){
// This will invoke the proxied interceptors for `#Transactional` since it's self-autowired
myTestStreamClass.testStream();
}
#Transactional(readOnly = true)
public void testStream(){
try(Stream<Person> top10ByFirstName = personRepository.findTop10ByFirstName("Tom")){
top10ByFirstName.forEach(System.out::println);
}
}
}

How to test domain event in Spring Boot #DataJpaTest?

I'm using Spring Data JPA domain event as described in https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#core.domain-events. The event listener is marked with #Service. It is working perfectly when I run it, but I can't make it works when testing it using #DataJpaTest. If I replaced this with #SpringBootTest, the test run perfectly.
I know that #DataJpaTest will not load #Service. But even if I add #Import(MyService.class), this will still not work. My question how do I test domain event with #DataJpaTest without loading the full context as in #SpringBootTest?
It turned out that #SpringBootTest added #Transactional to the test. This causes the domain event listener to be not executed since it is still in transaction.
This is my solution.
// TestConfig
#TestConfiguration
public class TestConfig {
#Bean
public MyService myService() {
return new MyService()
}
}
// Domain Event Test
#RunWith(SpringRunner.class)
#Import({TestConfig.class})
#Transactional
#DataJpaTest
public class DomainEventTest {
#Autowired
private TestRepository repository;
public void domainEventTest() {
Entity entity = new Entity();
repository.save(entity);
}
}

Spring Boot JPA #Transactional #Service does not update, but #Transactional in controller does

I have a very basic Spring Boot/JPA stack app, with a controller, service layer, and repository that does not persist updates as I understand it should.
A trivial Entity:
#Entity
public class Customer {
#Id
#GeneratedValue(strategy=GenerationType.AUTO)
private Long id;
private String name;
protected Customer() {}
public Customer(String name) { this.name = name; }
// standard getters,setters //
}
A trivial Repository:
#Repository
public interface CustomerRepository extends CrudRepository<Customer, Long> {}
A simple Service layer:
// If the service is #Transactional and the controller is not, the update does NOT occur
#Transactional
#Service
public class CustomerService {
private static final Logger LOG = getLogger(CustomerService.class);
#Autowired
private CustomerRepository customerRepository;
boolean updateCustomerName(Long id, String name) {
Customer customer = customerRepository.findOne(id);
if (customer == null) { return false; }
// Modifies the entity
customer.setName(name);
// No explicit save()
return true;
}
}
And a REST controller that uses it all:
// If the controller is #Transactional and the service is not, the update occurs
#RestController
#RequestMapping("/mvc")
public class CustomerController {
#Autowired
private CustomerService customerService;
#RequestMapping(path = "{id}", method = RequestMethod.PUT)
public ResponseEntity updateCustomerName(#PathVariable Long id, #RequestParam("name") String name) {
customerService.updateCustomerName(id,name);
return ResponseEntity.noContent().build();
}
}
These are wired together with a simple one-liner SpringBootApplication
I have SQL debug logs enabled and see the selects, update, etc.
With the code above: When the service method is invoked by the controller, the modified entity is not persisted. SQL logs show the select of the entity but no update.
There is also no update if nothing is marked #Transactional
However, simply by moving the #Transactional annotation from the service class to the controller class, the SQL update does occur.
If I add an explicit customerRepository.save(customer) to the service method, the update also occurs. But my understanding is that the ORM should automatically save modified persistent entities.
I'm sure the issue has something to do with the EntityManager lifecycle in the web request, but I'm puzzled. Do I need to do additional configuration?
Complete example at https://github.com/monztech/SO-41515160
EDIT: This was solved, see below. Per the Spring spec #Transactional does not work in package-private methods and mistakenly did not make the update service method public.
The update will occur if the method is public and the service class has the #Transactional annotation.
I do have another question, however. Why is the #Transactional annotation necessary? (the update does not occur without it) Shouldn't the entity manager still persist the object because of the open session in view mechanism that Spring uses, independent of any transaction?
Make your updateCustomerName method public.

How to access entity manager with spring boot and spring data

How can I get access to the Entity Manager in the repository when using Spring Boot and Spring Data?
Otherwise, I will need to put my big query in an annotation. I would prefer to have something more clear than a long text.
You would define a CustomRepository to handle such scenarios. Consider you have CustomerRepository which extends the default spring data JPA interface JPARepository<Customer,Long>
Create a new interface CustomCustomerRepository with a custom method signature.
public interface CustomCustomerRepository {
public void customMethod();
}
Extend CustomerRepository interface using CustomCustomerRepository
public interface CustomerRepository extends JpaRepository<Customer, Long>, CustomCustomerRepository{
}
Create an implementation class named CustomerRepositoryImpl which implements CustomerRepository. Here you can inject the EntityManager using the #PersistentContext. Naming conventions matter here.
public class CustomCustomerRepositoryImpl implements CustomCustomerRepository {
#PersistenceContext
private EntityManager em;
#Override
public void customMethod() {
}
}
In case you have many repositories to deal with, and your need in EntityManager is not specific for any particular repository, it is possible to implement various EntityManager functionality in a single helper class, maybe something like that:
#Service
public class RepositoryHelper {
#PersistenceContext
private EntityManager em;
#Transactional
public <E, R> R refreshAndUse(
E entity,
Function<E, R> usageFunction) {
em.refresh(entity);
return usageFunction.apply(entity);
}
}
The refreshAndUse method here is a sample method to consume a detached entity instance, perform a refresh for it and return a result of a custom function to be applied to the refreshed entity in a declarative transaction context. And you can add other methods too, including query ones...

Where should we use #Transactional and where is Service layer?

I have rest style controller in Spring. In controller I have injected dao interfaces. From controller I persist data. In the other words, I have like REST web service. people sends me data, and I persits it.
/**
* Payment rest controller which receives
* JSON of data
*/
#Controller
#RequestMapping("/data")
public class PaymentTransaction {
#Autowired
private TestDao dao;
#RequestMapping(value = "/test", method = RequestMethod.POST)
#ResponseBody()
public String test(HttpServletRequest request) {
...
}
At the moment I have #transaction annotation in Dao classes. For instance:
import org.springframework.transaction.annotation.Transactional;
#Component
#Transactional
public interface TestDao {
#Transactional(propagation = Propagation.REQUIRED)
public void first();
}
I have read that this is very bad style. Using this answer at stackoverflow , here is explain and examples why is this bad - we must not add this annotation in DAO and in controller too. We must add it in service layer.
But I don't understand what is the service layer? Or where is it? I do not have anything like this.
where should I write #Transactional annotation?
Best regards,
According to the cited post, you should design your classes somehow like this (rather pseudocode):
controller (responsible for handling clients' requests/responses)
#Controller
#RequestMapping("/data")
public class TestREST {
#Autowired
private TestService service;
public void storePayment(PaymentDTO dto) {
service.storePayment(dto); //request from a client
}
public PaymentDTO getPayment(int paymentId) {
return service.getPayment(paymentId); //response to a client
}
}
service layer (also called business layer, responsible for business logic - knows what to do with incoming messages, but does not know where they come from).
public class TestServiceImpl {
#Autowired
private TestDao dao;
#Transactional(propagation=Propagation.REQUIRED) //force transaction
public void storePayment(PaymentDTO paymentDto) {
// transform dto -> entity
dao.storePayment(paymentEntity); //read-write hence transaction is on
}
#Transactional(propagation=Propagation.NOT_SUPPORTED) //avoid transaction
public Payment getPayment(int paymentId) {
return dao.findPayment(paymentId); //read-only hence no transaction
}
}
data access layer (also called persistence layer, responsible for accessing database - knows how to use entity model / ORM, does not know anything about the upper service layer)
public class TestDAOImpl {
#PersistenceContext
private EntityManager em;
public void storePayment(PaymentEntity paymentEntity) {
em.persist(paymentEntity);
}
public PaymentEntity getPayment(int paymentId) {
return em.find(PaymentEntity.class, paymentId);
}
}
By this approach you get separation of concerns mentioned in the post. From the other hand such an approach (business layer vs data access layer) got a little dose of criticism from Adam Bien's on his blog ("JPA/EJB3 killed the DAO"). As you can see there is no a single solution for the problem, but I encourage to read some other opinions and apply the solution you find the most suitable for your needs.
When you call two Dao methods first & second from controller, 2 transactions will be done, one with starts before first method and ends after it's execution and the second one starts before second method starts and ends after it's execution. Whereas you create an additional class in between controller and dao (usually this is called service layer) and annotate it with #Transactional and call multiple Dao methods in it, a transaction is started at the start of service method and all the dao calls will be executed and transaction will be closed, which is what you require. And inject the Service into Controller.
Controller -> Service -> Dao
#Controller
#RequestMapping("/data")
public class PaymentTransaction {
#Autowired
private TestService service;
#RequestMapping(value = "/test", method = RequestMethod.POST)
#ResponseBody()
public String test(HttpServletRequest request) {
...
}
}
#Service
#Transactional
public class TestService {
#Autowired
private TestDao dao;
#Transactional
public void serviceCall(){
dao.first();
dao.second();
}
}

Resources