I would like to know about the getter method and the setter method as well as the function that each one occupies
Reading Javatpoint,
Getter and setter methods are frequently used in Java programming.
Getter and setter methods in Java are widely used to access and
manipulate the values of class fields. Usually, class fields are
decorated with a private access specifier. Thus, to access them,
public access specifiers are used with the getter and setter methods.
https://www.javatpoint.com/getter-and-setter-method-in-java-example
Related
This is the code that I have:
#Component
#Configuration
#PropertySource("application.properties")
public class Program {
#Value("${app.title}")
private String appTitle;
public Program() {
System.out.println(appTitle);
}
}
The application.properties has
app.title=The Program
The output is null insteaf of The Program.
So, what am I missing? I have tried several examples; none worked.
Since appTitle is an autowired field, it is not set until after the object is initially constructed. This is why the value is still null in your example. The bean construction process in this scenario is as follows:
The Program constructor is called, creating a new Program instance
The appTitle field is set on the newly constructed bean to ${app.title}
The ideal fix for this depends on your goals. If you truly need the value within the constructor, you can pass it in as an autowired constructor parameter. The value will then be available within the constructor:
#Component
#Configuration
#PropertySource("application.properties")
public class Program {
public Program(#Value("${app.title}") appTitle) {
System.out.println(appTitle);
}
}
If you don't need it in the constructor itself, but need it for the proper initialization of the bean, you could alternatively use the #javax.annotation.PostConstruct annotation to make use of it after the object's construction but before it is made available for use elsewhere:
#Component
#Configuration
#PropertySource("application.properties")
public class Program {
#Value("${app.title}")
private String appTitle;
#PostConstruct
public void printAppTitle() {
System.out.println(appTitle);
}
}
Finally, if you don't need the value at construction time, but need it during the life of the bean, what you have will work; it just won't be available within the body of the constructor itself:
#Component
#Configuration
#PropertySource("application.properties")
public class Program {
#Value("${app.title}")
private String appTitle;
}
Nothing wrong, just don't do it in a constructor...
Other answers on this question are written assuming the goal is creating a Spring-managed bean that uses the given property in its creation. However, based on your comments in another answer, it looks like the question you want answered is how to access an externalized property (one provided by #Value) within a no-argument constructor. This is based on your expectation that a Java inversion of control (IoC) container such as Spring should allow accessing externalized properties (and presumably other dependencies) within a no-argument constructor. That being the case, this answer will address the specific question of accessing the property within a no-argument constructor.
While there are certainly ways this goal could be achieved, none of them would be idiomatic usage of the Spring framework. As you discovered, autowired fields (i.e. fields initialized using setter injection) cannot be accessed within the constructor.
There are two parts to explaining why this is. First, why does it work the way it does, programmatically? Second, why was it designed the way it was?
The setter-based dependency injection section of the Spring docs addresses the first question:
Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a no-argument constructor or a no-argument static factory method to instantiate your bean.
In this case, it means that first the object is created using the no-argument constructor. Second, once the object is constructed, the appTitle is initialized on the constructed bean. Since the field isn't initialized until after the object is constructed, it will have its default value of null within the constructor.
The second question is why Spring is designed this way, rather than somehow having access to the property within the constructor. The constructor-based or setter-based DI? sidebar within the Spring documentation makes it clear that constructor arguments are in fact the idiomatic approach when dealing with mandatory dependencies in general.
Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to use constructors for mandatory dependencies and setter methods or configuration methods for optional dependencies. [...]
The Spring team generally advocates constructor injection, as it lets you implement application components as immutable objects and ensures that required dependencies are not null. Furthermore, constructor-injected components are always returned to the client (calling) code in a fully initialized state. [...]
Setter injection should primarily only be used for optional dependencies that can be assigned reasonable default values within the class. [...]
A property needed to construct the object certainly would be categorized as a mandatory dependency. Therefore, idiomatic Spring usage would be to pass in this required value in the constructor.
So in summary, trying to access an application property within a no-argument constructor is not supported by the Spring framework, and in fact runs contrary to the recommended use of the framework.
I have a basic Auto-wiring Question. I see the following two implementations that are possible in Spring auto-wiring
Method1
public class SimpleMovieLister {
private MovieFinder movieFinder;
#Autowired
public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;
}
// ...
}
Method2
public class SimpleMovieLister {
#Autowired
private MovieFinder movieFinder;
}
My understanding is that both are the same and I use a lot of Method2 in my code. What are the situations in which Method1 is useful ? Or is it just a case of Spring evolution and we have both possible ways in which to implement.
Sorry, if the question is too basic, but I need to get this cleared up
Method 1 is Setter Injection.
Method 2 is Field Injection.
A 3rd method is Constructor Injection
Example:
public class SimpleMovieLister {
private MovieFinder movieFinder;
#Autowired
public SimpleMovieLister(MovieFinder movieFinder) {
this.movieFinder = movieFinder;
}
// ...
}
Method 3, Constructor Injection is preferred because it makes testing significantly easier since you can pass in the required dependency.
Also, if your Bean only has 1 Constructor, then you can omit the #Autowired annotation. Spring will automatically choose that constructor method when creating the bean.
A good snippet from the docs:
The Spring team generally advocates constructor injection as it
enables one to implement application components as immutable objects
and to ensure that required dependencies are not null. Furthermore
constructor-injected components are always returned to client
(calling) code in a fully initialized state. As a side note, a large
number of constructor arguments is a bad code smell, implying that the
class likely has too many responsibilities and should be refactored to
better address proper separation of concerns.
Setter injection should primarily only be used for optional
dependencies that can be assigned reasonable default values within the
class. Otherwise, not-null checks must be performed everywhere the
code uses the dependency. One benefit of setter injection is that
setter methods make objects of that class amenable to reconfiguration
or re-injection later. Management through JMX MBeans is therefore a
compelling use case for setter injection.
Use the DI style that makes the most sense for a particular class.
Sometimes, when dealing with third-party classes for which you do not
have the source, the choice is made for you. For example, if a
third-party class does not expose any setter methods, then constructor
injection may be the only available form of DI.
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
Method 1 is setter Injection
Setter injection should primarily only be used for optional
dependencies that can be assigned reasonable default values within the
class. Otherwise, not-null checks must be performed everywhere the
code uses the dependency. One benefit of setter injection is that
setter methods make objects of that class amenable to reconfiguration
or re-injection later.
Method 2 is field Injection
I want to implement a function that extends BaseOperations and i get an exception if my class has a member that is not serializable. Why must the function be serializable? is it ok to use java transient with that member? is it ok to use static members in my funcion?
When posting a question like this, do share your code and error in a precise way.
When you declare a variable as transient then the variable is not eligible to be persistent. So you cannot serialize it. Static fields are not used to represent the state of an object. Static fields represent class state. If you really want to serialize then may be you will have to develop your own serializer/deserializer.
If a class have variable and methods that holds and modifies state then it is good to serialize it. If a variable values changes then it means its state is changing.
Also note that the BaseOperation class is an abstract class so any other class that make BaseOperation as its parent class will automatically have serialization.
Hy,
How #Autowired works in an attribute declared in an abstract class if its not inherited in the subclasses. What spring does under the hood in order the subclasses have the dependency injected in them if #Autowired annotation is not inherited in the subclasses?
Thanks
There's no such thing as a not inherited field in subclasses in Java. The private fields get inherited just as any other non-static field, they're just not visible in the subclass code. They can still be accessed with reflection though. Spring will have no problem autowiring such fields.
I have a Grails 2.4.4 application configured with spring-security-core. I want to generate fake users in the BootStrap using the faker plugin. However when I instantiate the bean fakerService in BootStrap and try using it ie. fakerService.firstname(), I get an error :
ERROR context.GrailsContextLoaderListener - Error initializing the application: Cannot invoke method firstName() on null object
Message: Cannot invoke method firstName() on null object
I'm just a beginner in Grails. Am I doing the Dependency Injection wrong?
http://pasteboard.co/rvbihRU.png
Yes you are :)
A little background. When you add a class-scope variable (a field) in a Groovy class without an explicit scope modifier (e.g. public, private, protected) it defaults to public just like classes and methods. But it is considered a property in the JavaBean sense, so the Groovy compiler creates a getter and a setter for you based on the name. So if you declare def foo and String bar (it doesn't matter whether you specify the type) you'll get Object getFoo(), void setFoo(Object), String getBar(), and void setBar(String) methods (you should decompile a POGO class with a decompiler and see this for yourself - it's pretty cool stuff - I recommend JD-GUI, but use whatever you prefer). If you had declared any of them already Groovy would skip that one and not overwrite yours. This is cool because you can treat the variable like a simple public field, but at any time add getter and/or setter logic and not affect calling clients (Groovy or Java, since the Java classes would have been calling the getter and setter all along, and Groovy calls the getter and setter for you when you read or write a property).
So why am I babbling on about this? Dependency injection is done by Spring - you're injecting Spring beans. There are various ways to do this, but the default in Grails is to use autoinject-by-name. So for any bean registered in the ApplicationContext and special classes like BootStrap, integration tests, etc., Spring scans the methods looking for setters. It strips off "set" and lowercases the next letter, and that's the "property" name of the setter. If there's a bean with that name in the ApplicationContext, Spring will call that setter, passing the bean with that name, and if the types are in sync, your class will have a reference to that bean.
You added a local variable. Nothing special happens to local variables, and Spring doesn't see them, and they're not candidates for dependency injection. Move the declaration to class scope, before the init closure, e.g.
class BootStrap {
def fakerService
def init = {
...
}
}
and the Groovy compiler will add a getFakerService method that isn't of much interest, but also a setFakerService method that Spring will see. It will determine that its property name is "fakerService", see that there is a bean with that name, and call the setter. This all happens before Grails calls the init closure, so at that point the value will be a non-null FakerService eagerly awaiting your calls.