I have a set of domain object, deriving from a base, where I've overridden Equals, IEquatable<T>.Equals and equality operators. I've successfully used Contains, but now I am trying to use Distinct differently. Here's look at a sample code:
var a = new Test { Id = 1 };
var a2 = new Test { Id = 1 };
var list = new List<Test> { a, a2 };
var distinct = list.Distinct().ToList(); // both objects, Equal implementations not called
var containsA = list.Contains(a); // true, Equal implementations called
var containsA2 = list.Contains(a); // true
var containsNewObjectWithSameId = list.Contains(new Test { Id = 1 }); // true
public class Test : IEquatable<Test>
{
public int Id { get; init; }
public bool Equals(Test other)
{
if (ReferenceEquals(null, other))
return false;
if (ReferenceEquals(this, other))
return true;
if (this.GetType() != other.GetType())
return false;
return this.Id == other.Id;
}
public override int GetHashCode() => base.GetHashCode + this.Id;
}
Contains finds matches, but Distinct is feeling very inclusive and keeps them both. From MS docs:
The first search does not specify any equality comparer, which means FindFirst uses
EqualityComparer.Default to determine equality of boxes. That in turn uses the implementation
of the IEquatable.Equals method in the Box class.
What am I missing?
Thanks #JonSkeet for your insight in the comments.
The problem in this case is the way I wrote my GetHashCode method. It has nothing to do with LINQ, as I originally thought.
Explanation
GetHashCode has to be identical for objects that compare equally. In my case - since the base implementation of object.Equals only checks for reference equality and I am comparing two separate objects - a and b, their base.GetHashCode would result in different values, which in turn would render those two objects as not equal.
Solution
In this case, simply returning the Id value is enough as is shown in MS docs:
One of the simplest ways to compute a hash code for a numeric value that has the same or a smaller range than the Int32 type is to simply return that value.
So changing the above code sample like this:
public override int GetHashCode() => this.Id;
would solve the issue. Please keep in mind that if the value of Id is not unique, this will cause ill behavior. In such cases you'll need another property to check and you will have to compose GetHashCode from ALL those properties. For further info refer to MS docs
Related
I need your help.
If i want to sort a PriorityQeueu in java, with out connection to it's attributes - could i use the hashCode's Objects to compare?
This how i did it:
comp = new Comparator<Person>() {
#Override
public int compare(Person p1, Person p2) {
if(p1.hashCode() < p2.hashCode()) return 1;
if(p1.hashCode() == p2.hashCode()) return 0;
return -1;
}
};
collector = new PriorityQueue<Person>(comp);
It doesn't sound like a good approach.
Default hashCode() is typically implemented by converting the internal address of the object into an integer. So the order of objects will differ between application executions.
Also, 2 objects with the same set of attribute values will not return the same hashCode value unless you override the implementation. This actually breaks the expected contract of Comparable.
I'm looking for an elegant way to execute a Contains() statement in a scalable way. Please allow me to give some background before I come to the actual question.
The IN statement
In Entity Framework and LINQ to SQL the Contains statement is translated as a SQL IN statement. For instance, from this statement:
var ids = Enumerable.Range(1,10);
var courses = Courses.Where(c => ids.Contains(c.CourseID)).ToList();
Entity Framework will generate
SELECT
[Extent1].[CourseID] AS [CourseID],
[Extent1].[Title] AS [Title],
[Extent1].[Credits] AS [Credits],
[Extent1].[DepartmentID] AS [DepartmentID]
FROM [dbo].[Course] AS [Extent1]
WHERE [Extent1].[CourseID] IN (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Unfortunately, the In statement is not scalable. As per MSDN:
Including an extremely large number of values (many thousands) in an IN clause can consume resources and return errors 8623 or 8632
which has to do with running out of resources or exceeding expression limits.
But before these errors occur, the IN statement becomes increasingly slow with growing numbers of items. I can't find documentation about its growth rate, but it performs well up to a few thousands of items, but beyond that it gets dramatically slow. (Based on SQL Server experiences).
Scalable
We can't always avoid this statement. A JOIN with the source data in stead would generally perform much better, but that's only possible when the source data is in the same context. Here I'm dealing with data coming from a client in a disconnected scenario. So I have been looking for a scalable solution. A satisfactory approach turned out to be cutting the operation into chunks:
var courses = ids.ToChunks(1000)
.Select(chunk => Courses.Where(c => chunk.Contains(c.CourseID)))
.SelectMany(x => x).ToList();
(where ToChunks is this little extension method).
This executes the query in chunks of 1000 that all perform well enough. With e.g. 5000 items, 5 queries will run that together are likely to be faster than one query with 5000 items.
But not DRY
But of course I don't want to scatter this construct all over my code. I am looking for an extension method by which any IQueryable<T> can be transformed into a chunky executing statement. Ideally something like this:
var courses = Courses.Where(c => ids.Contains(c.CourseID))
.AsChunky(1000)
.ToList();
But maybe this
var courses = Courses.ChunkyContains(c => c.CourseID, ids, 1000)
.ToList();
I've given the latter solution a first shot:
public static IEnumerable<TEntity> ChunkyContains<TEntity, TContains>(
this IQueryable<TEntity> query,
Expression<Func<TEntity,TContains>> match,
IEnumerable<TContains> containList,
int chunkSize = 500)
{
return containList.ToChunks(chunkSize)
.Select (chunk => query.Where(x => chunk.Contains(match)))
.SelectMany(x => x);
}
Obviously, the part x => chunk.Contains(match) doesn't compile. But I don't know how to manipulate the match expression into a Contains expression.
Maybe someone can help me make this solution work. And of course I'm open to other approaches to make this statement scalable.
I’ve solved this problem with a little different approach a view month ago. Maybe it’s a good solution for you too.
I didn’t want my solution to change the query itself. So a ids.ChunkContains(p.Id) or a special WhereContains method was unfeasible. Also should the solution be able to combine a Contains with another filter as well as using the same collection multiple times.
db.TestEntities.Where(p => (ids.Contains(p.Id) || ids.Contains(p.ParentId)) && p.Name.StartsWith("Test"))
So I tried to encapsulate the logic in a special ToList method that could rewrite the Expression for a specified collection to be queried in chunks.
var ids = Enumerable.Range(1, 11);
var result = db.TestEntities.Where(p => Ids.Contains(p.Id) && p.Name.StartsWith ("Test"))
.ToChunkedList(ids,4);
To rewrite the expression tree I discovered all Contains Method calls from local collections in the query with a view helping classes.
private class ContainsExpression
{
public ContainsExpression(MethodCallExpression methodCall)
{
this.MethodCall = methodCall;
}
public MethodCallExpression MethodCall { get; private set; }
public object GetValue()
{
var parent = MethodCall.Object ?? MethodCall.Arguments.FirstOrDefault();
return Expression.Lambda<Func<object>>(parent).Compile()();
}
public bool IsLocalList()
{
Expression parent = MethodCall.Object ?? MethodCall.Arguments.FirstOrDefault();
while (parent != null) {
if (parent is ConstantExpression)
return true;
var member = parent as MemberExpression;
if (member != null) {
parent = member.Expression;
} else {
parent = null;
}
}
return false;
}
}
private class FindExpressionVisitor<T> : ExpressionVisitor where T : Expression
{
public List<T> FoundItems { get; private set; }
public FindExpressionVisitor()
{
this.FoundItems = new List<T>();
}
public override Expression Visit(Expression node)
{
var found = node as T;
if (found != null) {
this.FoundItems.Add(found);
}
return base.Visit(node);
}
}
public static List<T> ToChunkedList<T, TValue>(this IQueryable<T> query, IEnumerable<TValue> list, int chunkSize)
{
var finder = new FindExpressionVisitor<MethodCallExpression>();
finder.Visit(query.Expression);
var methodCalls = finder.FoundItems.Where(p => p.Method.Name == "Contains").Select(p => new ContainsExpression(p)).Where(p => p.IsLocalList()).ToList();
var localLists = methodCalls.Where(p => p.GetValue() == list).ToList();
If the local collection passed in the ToChunkedList method was found in the query expression, I replace the Contains call to the original list with a new call to a temporary list containing the ids for one batch.
if (localLists.Any()) {
var result = new List<T>();
var valueList = new List<TValue>();
var containsMethod = typeof(Enumerable).GetMethods(BindingFlags.Static | BindingFlags.Public)
.Single(p => p.Name == "Contains" && p.GetParameters().Count() == 2)
.MakeGenericMethod(typeof(TValue));
var queryExpression = query.Expression;
foreach (var item in localLists) {
var parameter = new List<Expression>();
parameter.Add(Expression.Constant(valueList));
if (item.MethodCall.Object == null) {
parameter.AddRange(item.MethodCall.Arguments.Skip(1));
} else {
parameter.AddRange(item.MethodCall.Arguments);
}
var call = Expression.Call(containsMethod, parameter.ToArray());
var replacer = new ExpressionReplacer(item.MethodCall,call);
queryExpression = replacer.Visit(queryExpression);
}
var chunkQuery = query.Provider.CreateQuery<T>(queryExpression);
for (int i = 0; i < Math.Ceiling((decimal)list.Count() / chunkSize); i++) {
valueList.Clear();
valueList.AddRange(list.Skip(i * chunkSize).Take(chunkSize));
result.AddRange(chunkQuery.ToList());
}
return result;
}
// if the collection was not found return query.ToList()
return query.ToList();
Expression Replacer:
private class ExpressionReplacer : ExpressionVisitor {
private Expression find, replace;
public ExpressionReplacer(Expression find, Expression replace)
{
this.find = find;
this.replace = replace;
}
public override Expression Visit(Expression node)
{
if (node == this.find)
return this.replace;
return base.Visit(node);
}
}
Please allow me to provide an alternative to the Chunky approach.
The technique involving Contains in your predicate works well for:
A constant list of values (no volatile).
A small list of values.
Contains will do great if your local data has those two characteristics because these small set of values will be hardcoded in the final SQL query.
The problem begins when your list of values has entropy (non-constant). As of this writing, Entity Framework (Classic and Core) do not try to parameterize these values in any way, this forces SQL Server to generate a query plan every time it sees a new combination of values in your query. This operation is expensive and gets aggravated by the overall complexity of your query (e.g. many tables, a lot of values in the list, etc.).
The Chunky approach still suffers from this SQL Server query plan cache pollution problem, because it does not parametrizes the query, it just moves the cost of creating a big execution plan into smaller ones that are more easy to compute (and discard) by SQL Server, furthermore, every chunk adds an additional round-trip to the database, which increases the time needed to resolve the query.
An Efficient Solution for EF Core
🎉 NEW! QueryableValues EF6 Edition has arrived!
For EF Core keep reading below.
Wouldn't it be nice to have a way of composing local data in your query in a way that's SQL Server friendly? Enter QueryableValues.
I designed this library with these two main goals:
It MUST solve the SQL Server's query plan cache pollution problem ✅
It MUST be fast! ⚡
It has a flexible API that allows you to compose local data provided by an IEnumerable<T> and you get back an IQueryable<T>; just use it as if it were another entity of your DbContext (really), e.g.:
// Sample values.
IEnumerable<int> values = Enumerable.Range(1, 1000);
// Using a Join (query syntax).
var query1 =
from e in dbContext.MyEntities
join v in dbContext.AsQueryableValues(values) on e.Id equals v
select new
{
e.Id,
e.Name
};
// Using Contains (method syntax)
var query2 = dbContext.MyEntities
.Where(e => dbContext.AsQueryableValues(values).Contains(e.Id))
.Select(e => new
{
e.Id,
e.Name
});
You can also compose complex types!
It goes without saying that the provided IEnumerable<T> is only enumerated at the time that your query is materialized (not before), preserving the same behavior of EF Core in this regard.
How Does It Works?
Internally QueryableValues creates a parameterized query and provides your values in a serialized format that is natively understood by SQL Server. This allows your query to be resolved with a single round-trip to the database and avoids creating a new query plan on subsequent executions due to the parameterized nature of it.
Useful Links
Nuget Package
GitHub Repository
Benchmarks
SQL Server Cache Pollution Problem
QueryableValues is distributed under the MIT license
Linqkit to the rescue! Might be a better way that does it directly, but this seems to work fine and makes it pretty clear what's being done. The addition being AsExpandable(), which lets you use the Invoke extension.
using LinqKit;
public static IEnumerable<TEntity> ChunkyContains<TEntity, TContains>(
this IQueryable<TEntity> query,
Expression<Func<TEntity,TContains>> match,
IEnumerable<TContains> containList,
int chunkSize = 500)
{
return containList
.ToChunks(chunkSize)
.Select (chunk => query.AsExpandable()
.Where(x => chunk.Contains(match.Invoke(x))))
.SelectMany(x => x);
}
You might also want to do this:
containsList.Distinct()
.ToChunks(chunkSize)
...or something similar so you don't get duplicate results if something this occurs:
query.ChunkyContains(x => x.Id, new List<int> { 1, 1 }, 1);
Another way would be to build the predicate this way (of course, some parts should be improved, just giving the idea).
public static Expression<Func<TEntity, bool>> ContainsPredicate<TEntity, TContains>(this IEnumerable<TContains> chunk, Expression<Func<TEntity, TContains>> match)
{
return Expression.Lambda<Func<TEntity, bool>>(Expression.Call(
typeof (Enumerable),
"Contains",
new[]
{
typeof (TContains)
},
Expression.Constant(chunk, typeof(IEnumerable<TContains>)), match.Body),
match.Parameters);
}
which you could call in your ChunkContains method
return containList.ToChunks(chunkSize)
.Select(chunk => query.Where(ContainsPredicate(chunk, match)))
.SelectMany(x => x);
Using a stored procedure with a table valued parameter could also work well. You in effect write a joint In the stored procedure between your table / view and the table valued parameter.
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql/table-valued-parameters
I'm currently working in a project that involves the encryption of a few columns in an existing database. There is quite a lot of code already written against the current schema, a lot of which is in the form of custom linq-to-sql queries. The number of queries is in the neighbourhood of a 5 figure number, so modifying and re-testing each and everyone of them would be way too expensive.
An alternative we found is to keep the DB schema the same --only altering the columns length slightly, which mean we don't need to change our current entity class definitions-- and instead, changing the expression trees on-the-fly, before they reach the l2sql IQueryProvider, and apply a decryption function on the columns I need. I do this by wrapping the pertinent Table<TEntity> properties of my DataContext with a custom IQueryable<TEntity> implementation, which allows me to preview every single query in the system.
In my current implementation, say I've got this query:
var mydate = new DateTime(2013, 1, 1);
var context = new DataContextFactory.GetClientsContext();
Expression<Func<string>> foo = context.MyClients.First(
c => c.BirthDay < mydate).EncryptedColumn;
but when I catch the query, I change it to read:
Expression<Func<string>> foo = context.Decrypt(
context.MyClients.First(c => c.BirthDay < mydate).EncryptedColumn);
I do this using the ExpressionVisitor class. In the VisitMember method, I check and see whether the current MemberExpression refers to an encrypted column. If it does, I substitute the expression for a method call:
private const string FuncName = "Decrypt";
protected override Expression VisitMember(MemberExpression ma)
{
if (datactx != null && IsEncryptedColumnReference(ma))
return MakeCallExpression(ma);
}
return base.VisitMember(ma);
}
private static bool IsEncryptedColumnReference(MemberExpression ma)
{
return ma.Member.Name == "EncryptedColumn"
&& ma.Member.DeclaringType == typeof(MyClient);
}
private Expression MakeCallExpression(MemberExpression ma)
{
const BindingFlags flags = BindingFlags.Instance | BindingFlags.Public;
var mi = typeof(MyDataContext).GetMethod(FuncName, flags);
return Expression.Call(datactx, mi, ma);
}
datactx is an instance variable with a reference to the expression pointing at the current datacontext (which I look up in a previous pass).
My problem is that if I have a query such as:
var qbeClient = new MyClient { EncryptedColumn = "FooBar" };
Expression<Func<MyClient>> dbquery = () => context.MyClients.First(
c => c.EncryptedColumn == qbeClient.EncryptedColumn);
I want it to be turned into:
Expression<Func<MyClient>> dbquery = () => context.MyClients.First(c =>
context.Decrypt(c.EncryptedColumn) == qbeClient.EncryptedColumn);
instead, what I'm getting is this:
Expression<Func<MyClient>> dbquery = () => context.MyClients.First(c =>
context.Decrypt(c.EncryptedColumn) == context.Decrypt(qbeClient.EncryptedColumn));
Which I don't want, because when I've got an in-memory object, the data is already unencrypted (besides, I don't want a nasty db function call against my objects!)
So, that's basically my question: Having a MemberExpression instance, how can I determine whether it refers to an in-memory object or a row in the database?
Thanks in advance
Edit:
#Shlomo's code actually solves the case I posted, but now one of my previous tests got broken:
var context = new DataContextFactory.GetClientsContext();
Expression<Func<string>> expr = context.MyClients.First().EncryptedColumn;
Expression<Func<string>> expected = context.Decrypt(
context.MyClients.First().EncryptedColumn);
var actual = MyVisitor.Visit(expr);
Assert.AreEqual(expected.ToString(), actual.ToString());
In this case, the reference to EncryptedColumn isn't a parameter, but it should definitely be taken into account by the visitor!
A MemberExpression representing a DB row will be a descendent of a ParameterExpression. In-Memory objects will not, they'll most likely come from some form of a FieldExpression.
In your case, something like this will work for most cases (adding one method to your code, and revising your VisitMember method:
private bool IsFromParameter(MemberExpression ma)
{
if(ma.Expression.NodeType == ExpressionType.Parameter)
return true;
if(ma.Expression is MemberExpression)
return IsFromParameter(ma.Expression as MemberExpression);
return false;
}
protected override Expression VisitMember(MemberExpression ma)
{
if (datactx != null && IsEncryptedColumnReference(ma) && IsFromParameter(ma))
return MakeCallExpression(ma);
}
return base.VisitMember(ma);
}
I want to do the same as explained here:
Sorting a list using Lambda/Linq to objects
that is:
public enum SortDirection { Ascending, Descending }
public void Sort<TKey>(ref List<Employee> list,
Func<Employee, TKey> sorter, SortDirection direction)
{
if (direction == SortDirection.Ascending)
list = list.OrderBy(sorter);
else
list = list.OrderByDescending(sorter);
}
to call it he said to do:
Sort(ref employees, e => e.DOB, SortDirection.Descending);
but I do not understand what TKey is refering to and as I can see in the call it is missed the generic TKey.
Could you explain me what is TKey and how to use it?
I suppose I can use another name for the method, it is not necessary to be Sort, right?
thanks!
You sort by the key which is of type TKey and must implement IComparable<TKey>. For instance:
// key: Firstname
// TKey: string (which is IComparable<String>
list.OrderBy(person => person.Firstname);
The above code sorts by firstname, which is what you define using the sorter. And yes, you can give your method any name you like. It does not have to be named Sort.
Improvement Suggestion (indirectly related to the question)
instead of changing list and passing it as a reference I'd suggest you to consider the following implementation:
public IOrderedEnumerable<Employee> Sort<TKey>(IEnumerable<Employee> list, Func<Employee, TKey> sorter, SortDirection direction);
{
IOrderedEnumerable<Employee> result;
if (direction == SortDirection.Ascending)
result = list.OrderBy(sorter);
else
result = list.OrderByDescending(sorter);
return result;
}
You could then return a new ordered enumerable of Employee objects instead of changing the old one and use any enumerable instead of List object only. This gives you more flexibility and is closer to the LINQ implementation which people tend to be used to.
I've written the following code for retrieving the StructureIds from an IEnumerable<Structure>:
Action<Structure> recurse = null;
List<int> structureIds = new List<int>();
recurse = (r) =>
{
structureIds.Add(r.StructureId);
r.Children.ForEach(recurse);
};
IEnumerable<Structure> structures = GetStructures();
structures.ForEach(recurse);
I'd really like to make this generic so I can use it with any IEnumerable, i.e. something like:
public static IEnumerable<TType> GetPropertyValues<TType, TPropertyType>(
this IEnumerable<TType> this, <Property Declaration>)
{
// Generic version of the above code?
}
Can this be done?
Action isn't very Linq'ish. How about Func instead? (Untested code)
public static IEnumerable<TProp> RecurseSelect<TSource, TProp>(
this IEnumerable<TSource> source,
Func<TSource, TProp> propertySelector,
Func<TSource, IEnumerable<TSource>> childrenSelector
)
{
foreach(TSource x in source)
{
yield return propertySelector(x);
IEnumerable<TSource> children = childrenSelector(x);
IEnumerable<TProp> values = children.RecurseSelect(propertySelector, childrenSelector);
foreach(TProp y in values)
{
yield return y;
}
}
}
And then
IEnumerable<Structure> structures = GetStructures();
IEnumerable<int> structureIds = structures.RecurseSelect(
s => s.StructureId,
s => s.Children);
Your problem is that you're not adding each item to a list, you're adding the a property of each item. That property will only be available for a Structure, and not any other type you might reuse the code with.
You also don't have a mechanism for getting the children of your other classes. (the r.Children property you use).
Your two solutions would be to use interfaces (that is, define IHasChildren and IGetProperty) that could be used as base types for a simple algorithm, or you could pass in functions to your method that allow this to be more freely calculated. For example, your method signature might need to be this:
public static IEnumerable<TPropertyType> GetPropertyValues<TType, TPropertyType>
(this IEnumerable<TType> rootItem, Func<TType, IEnumerable<TType>> getChildren, Func<TType, TPropertyType> getIdValue)
... but that's not going to be very pretty!