How to simulate a overcrowed wifi with throttling in Charles Proxy - throttling

I would like to use Charles Proxy throttling ability to simulate an overcrowed network as the one we can find in an exhibition with a lot of people.
I assume there are at least 2 factors that could affect the connection :
distance to the antenna
number of people on the antenna
In Charles Proxy I can play with multiple settings:
bandwidth
Latency
MTU
Reliability
Stability
Unstable quality range
The objective is to use those settings to be able to reproduce in lab conditions, the condition I can experience for real in the exhibition.
Are there any other factors that I should take into account ?
What are the most relevant settings to touch ?
What are relevant values for those ?

Related

Live traffic on port via snmp and discrepancies

Iam trying to get data from HP switches and Juniper firewalls and its port via snmp.
I am looking for the way how to analyze live traffic on port so I can create a graph of utilization of the ports like on Solarwinds or Observium.
So far I have the results I am getting are from the formula on How to calculate traffic on cisco
It works fine, however, every couple of readings I get abnormal speeds. I.e. for a virtual interface on the firewall, which is limited to 4MB I get 20+ MB every now and then.
I have a cron job which polls the devices every 5 minutes so the formula is using 300 seconds as a delta of time.
So the question is, is it possible for a port to be showing these abnormalities or am I doing something wrong? Any insight would be amazing :-)
The problem is that you are using ifTable defined in RFC1213. It is sort of outdated due to ifInOctets and ifOutOctets are defined as 32-bit counters. So they will overflow and reset real fast and you'll face abnormal results when this happens. I'd suggest switching to ifXTable (IF-MIB) where these counters are defined as 64-bit values.

Synchronizing a counter across a network

I have two computers that can talk to each other over a serial connection. The connection is made over a wireless network. There is a variable, changing delay in communications between the two systems. On both systems I have a counter runtime that increments by 1 every ms. They both start as soon as the applications start. Say each computer is started at different times. How can I with with the serial connection synchronize the counters so that systemA.counter will equal systemB.counter and so that both counters increment at the same time (or as close as possible).
Ideally once synchronized the counters would drift only slowly apart so that once every 3 or 4 thousand incs I could re-synchronize.
I'm looking for good resources on the topic, example algorythms, example code (c/c++), anything to point me in the right direction.
Update
This is a closed system, no internet. For all intents and purposes no real protocol at all besides and open serial line over the wireless link. That link at the moment is bluetooth, but I'm thinking over moving it to a ZigBee Mesh. There are currently 2 nodes, but if I have 30 nodes all running this same application I would want them all to synchronize. There is not client/server designation, just a couple of devices running the same program with a counter. I don't have access to anything like time, just this counter that increments once a millisecond and whatever algorithm I can put in place.
Once I can get this working, I would like to put in place a propositioning and mapping system, but to figure out distances between nodes, I need actuate timing synchronized on the devices.
If you use this counters to order events in a system, you should look at vector clocks or Lamport timestamps.
The obvious resource is NTP, which is documented for example at http://www.eecis.udel.edu/~mills/ntp.html and with links off there. Basically, this uses timestamps to adjust the frequency at which local clocks run. The protocol has been around for years and been the subject of continuous research - I can't see any pack of slides there which immediately makes it clear how it works. You might be better to see if there is already an NTP implementation available than to try and re-implement it yourself.
It appears (e.g. from searching) that there is a small industry of people working on time synchronisation algorithms, especially in the context of wireless sensor networks. One jumping-off point, apart from searches, is the survey paper at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.2012 - Time synchronization in sensor networks: A survey (2004)

Measuring link quality between two machines

Are there some standard methods(libraries) for measuring quality of link/connection between two computers.
This results would be used to improve routing logic. If connection condition is unacceptable stop data transfer to that computer and initiate alternative route for that transfer. It looks like Skype has some of this functionality.
I was thinking to establish several continuous testing streams that can show bandwidth problems, and some kind of ping-pong messaging logic to show latency values.
Link Reliability
I usually use a continuous traceroute (i.e. mtr) for isolating unreliable links; but for your purposes, you could start with average ping statistics as #recursive mentioned. Migrate to more complicated things (like a UDP/TCP echo protocol) if you find that ICMP is getting blocked too often by client firewalls in the path.
Bandwidth / Delay Estimation
For bandwidth and delay estimation, yaz provides a low-bandwidth algorithm to estimate throughput / delay along the path; it uses two different endpoints for measurement, so your client and servers will need to coordinate their usage.
Sally Floyd maintains a pretty good list of bandwidth estimation tools that you may want to check out if yaz isn't what you are looking for.
Ping is good for testing latency, but not bandwidth.

How can I estimate ethernet performance?

I need to think about performance limitations of 100 mbps ethernet (including scenarios with up to ~100 endpoints on the same subnet) and I'm wondering how best to go about estimating the capacity of the network. Are there any rules of thumb for this?
The reason I ask is that I am working on some back-of-the-envelope level calculations about performance limitations, so it doesn't need to be incredibly accurate. I just haven't been through this exercise before and was hoping to gain some insight from those who have. Mark Brackett's answer (as of 1/26) is along the lines of what I am looking for.
If you're using switches (and, honestly, who isn't these days) - then I've found 80% of capacity a reasonable estimate. Usually, it's really about 90% because of TCP overhead - but 80% accounts for occasional retransmits.
If it's a single collision domain (hubs), then you'd probably be around 30% with moderate activity on those 100 nodes. But, it'd be pretty variable based on the traffic generated. And anyone putting 100 nodes in a single CD these days would no doubt be shot - so I don't think you'll actually run into those IRL.
Edit: Note that these numbers are for a relatively healthy network - one that is generally defined as working. Extremely excessive broadcasts or other anomalous traffic patterns have been known to bring a network to it's knees.
Use WANem
WANem is a Wide Area Network Emulator,
meant to provide a real experience of
a Wide Area Network/Internet, during
application development / testing over
a LAN environment.
You can simulate any network scenario using it and then test your application's behaviour using it. It is open-source and is available with sourceforge.
Link : WANem - The Wide Area Network emulator
Opnet creates software for simulating network performance. I once used Opnet IT Guru Academic edition. Maybe this application or some other software from opnet may be of some help.
100 endpoints are not suppose to be an issue. If the network is properly configured (nothing special) the only issue is the bandwidth. Fast Ethernet (100 mbps) should be able to transfer almost 10Mb (bytes) per second. It is able to transfer it to one client or to many. If you are using hubs instead of switches. And if you are using half-duplex instead of full-duplex. Then you should change that( this is the rule of thumb).
Working from the title of your post, "How can I estimate Ethernet performance", see this wiki link; http://en.wikipedia.org/wiki/Ethernet_frame#Maximum_throughput

Average User Download Speeds

Any ideas what the average user's download speed is? I'm working on a site that streams video and am trying to figure out what an average download speed as to determine quality.
I know i might be comparing apples with oranges but I'm just looking for something to get a basis for where to start.
Speedtest.net has a lot of stats broken down by country, region, city and ISP. Not sure about accuracy, since it's only based on the people using their "bandwidth measurement" service.
It would depend on the geography that you are targeting. For example, in India, you can safely assume it would be a number below 256kbps.
Try attacking it from the other angle. Look at streaming services that cater to the customer you want, and have significant volume (maybe youtube) and see what they're pushing. You'll find there'a pretty direct correlation between alexa rating (popularity) and quality(minimum bitrate required). Vimeo will always have fewer users than Youtube because the user experience is poor for low bitrate users.
There are many other factors, and this should only form one small facet of your bandwidth decision, but it's a useful comparison to make.
Keep in mind, however, that you want to degrade gracefully. As more and more sites come online you'll start bumping into ISPs that limit total transfer, and being able to tell your customers how much of their bandwidth your site is consuming is useful, as well as proclaiming that you are a low bandwidth site.
Further, more and more users are using portable cellular connections (iPhone) where limited bandwidth is a big deal. AT&T has oversold many markets so being able to get useful video through a tiny link will enable you to capture market that vimeo and Hulu cannot.
Quite frankly, though, the best thing to do is degrade on the fly gracefully. Measure the bandwidth of the connection continuously and adjust bandwidth as needed for a smooth playback experience with good audio. Then you can take all users across the gamut...
-Adam
You could try looking at the lower tier offerings from AT&T and Comcast. Probably 1.5 Mbps for the basic level (which I imagine most people get).
The "test your bandwidth" sites may have some stats on this, too.
There are a lot of factors involved (server bandwidth, local ISP, network in between, etc) which make it difficult to give a hard answer. With my current ISP, I typically get 200-300 kB/sec. Although when the planets align I've gotten as much as 2 MB/sec (the "quoted" peak downlink speed). That was with parallel streams, however. The peak bandwidth I've achieved on a single stream is 1.2 MB/sec
The best strategy is always to give your users options. Why don't you start the stream at a low bitrate that will work for everyone and provide a "High Quality" link for those of us with FTTH connections? I believe YouTube has started doing this.
According to CWA, the average US resident has a 1.9Mbps download speed. They have data by state, so if you have money then you can probably get a more specific report for your intended audience. Keep in mind, however, that more and more people are sharing this with multiple computers, using VOIP devices, and running background processes that consume bandwidth.
-Adam
Wow.
This is so dependent on the device, connection method, connection type, ISP throttling, etc. involved in the end-to-end link.
To try and work out an average speed would be fairly impossible.
Think, fat pipe at home (8Gb plus) versus bad wireless connection provided for free at the airport (9.6kb) and you can start to get an idea of the range of connections you're trying to average over.
Then we move onto variations in screen sizes and device capabilities.
Maybe trawl the UA stings of incoming connectins to get an idea of the capabilities of the user devices being used out there.
Maybe see if you can use some sort of geolocation solution to try and see how people are connecting to your site to get an idea of connection capabilities as well.
Are you offering the video in a fixed format, i.e. X x Y pixel size?
HTH.
cheers,
Rob
If I'm using your site, "average" doesn't matter. All I care about is MY experience, and so you either need to make the site adaptive, design for a pretty low speed (iPhone 2G gets you 70-80 kbps if you're lucky, to take one common case), or be very clear about the requirements so I can decide whether or not my connection-of-the-moment will work or not.
What you don't want to subject your users to is unpredictably choppy, intermittent video and audio.

Resources