I have the dataframe which has 3 colums(Positive Reviews,Negative and Score):
negative Positive Label
0 [there, were, issues, with, the, wifi, c] [no, positive] 1
1 [rooms, could, do, with, a, bit, of, a] [the, well, meaning, staff] 2.5
I want to apply the TfidfVectorizer on the DF.
I have written the following code.
from sklearn.feature_extraction.text import TfidfVectorizer
df_x=train_df["Positive"]
df_y=train_df["Score"]
cv = TfidfVectorizer()
df_xcv = cv.fit_transform(df_x)
a=df_xcv.toarray()
cv.get_feature_names()
which is giving an error:
AttributeError: 'list' object has no attribute 'lower'
Why is this throwing an error?
You are passing a pd.Series object to the cv.fit_transform() instead of a list/series of strings. So what you could do is to join your lists in each row and then pass them to the Vectorizer method:
df['joined_positive'] = df['Positive'].apply(' '.join)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(df['joined_positive'])
Related
The final code will print the distance between states. I'm trying to print the menu with the names of the states numbered and vertically. I really struggle to find my mistakes.
This code doesn't raise any error, it just prints nothing, empty.
state_data = """
LA 34.0522°N 118.2437°W
Florida 27.6648°N 81.5158°W
NY 40.7128°N 74.0060°W"""
states = []
import re
state_data1 = re.sub("[°N#°E]", "", state_data)
def process_states(string):
states_temp = string.split()
states = [(states_temp[x], float(states_temp[x + 1]), float(states_temp[x + 2])) for x in
range(0, len(states_temp), 3)]
return states
def menu():
for state_data in range(state_data1):
print(f'{state_data + 1} {name[number]}')
My first guess is, your code does not print anything without errors because you never actually execute process_airports() nor menu().
You have to call them like this at the end of your script:
something = process_airports(airport_data1)
menu()
This will now raise some errors though. So let's address them.
The menu() function will raise an error because neither name nor number are defined and because you are trying to apply the range function over a string (airport_data1) instead of an integer.
First fixing the range error: you mixed two ideas in your for-loop: iterating over the elements in your list airport_data1 and iterating over the indexes of the elements in the list.
You have to choose one (we'll see later that you can do both at once), in this example, I choose to iterate over the indexes of the list.
Then, since neither name nor number exists anywhere they will raise an error. You always need to declare variables somewhere, however, in this case they are not needed at all so let's just remove them:
def menu(data):
for i in range(len(data)):
print(f'{i + 1} {data[i]}')
processed_airports = process_airports(airport_data1)
menu(processed_airports)
Considering data is the output of process_airports()
Now for some general advices and improvements.
First, global variables.
Notice how you can access airport_data1 within the menu() function just fine, while it works this is not something recommended, it's usually better to explicitly pass variables as arguments.
Notice how in the function I proposed above, every single variable is declared in the function itself, there is no information coming from a higher scope. Again, this is not mandatory but makes the code way easier to work with and understand.
airport_data = """
Alexandroupoli 40.855869°N 25.956264°E
Athens 37.936389°N 23.947222°E
Chania 35.531667°N 24.149722°E
Chios 38.343056°N 26.140556°E
Corfu 39.601944°N 19.911667°E"""
airports = []
import re
airport_data1 = re.sub("[°N#°E]", "", airport_data)
def process_airports(string):
airports_temp = string.split()
airports = [(airports_temp[x], float(airports_temp[x + 1]), float(airports_temp[x + 2])) for x in
range(0, len(airports_temp), 3)]
return airports
def menu(data):
for i in range(len(data)):
print(f'{i + 1} {data[i]}')
# I'm adding the call to the functions for clarity
data = process_airports(airport_data1)
menu(data)
The printed menu now looks like that:
1 ('Alexandroupoli', 40.855869, 25.956264)
2 ('Athens', 37.936389, 23.947222)
3 ('Chania', 35.531667, 24.149722)
4 ('Chios', 38.343056, 26.140556)
5 ('Corfu', 39.601944, 19.911667)
Second and this is mostly fyi, but you can access both the index of a iterable and the element itself by looping over enumerate() meaning, the following function will print the exact same thing as the one with range(len(data)). This is handy if you need to work with both the element itself and it's index.
def menu(data):
for the_index, the_element in enumerate(data):
print(f'{the_index + 1} {the_element}')
I am making a pyomo model, where i want to use random numbers for my two dimensional parameters. I put a small python script for random numbers that looks exactly what i wanted to see for my two dimensional parameter. I am getting a TypeError: Cannot convert object of type 'list'(value =[[....]] to a numeric value. in my objective function. Below is my objective function and random numbers script.
model.obj = Objective(expr=sum(model.C[v,l] * model.T[v,l] for v in model.V for l in model.L) + \
sum(model.OC[o,l] * model.D[o,l] for o in model.O for l in model.L), sense=minimize)
import random
C = [[] for i in range(7)]
for i in range(7):
for j in range(5):
C[i]+= [random.randint(100,500)]
model.C = Param(model.V, model.L, initialize=C)
Please let me know if someone can help fixing this.
You should initialize your parameter using a function instead of a nested list
def init_c(m, i, j):
return random.randint(100,500)
model.c = Param(model.V, model.L, initialize=init_c)
I am using sklearn countvectorizer to build my term-document matrix
However,
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer(min_df=1)
corpus = ['this is jummy speaking now']
X = vectorizer.fit_transform(corpus)
c = vectorizer.transform(['lol 123']).toarray()
What happens is that X would be a term document matrix of 5 words. However, i would like the matrix to have an unknown column aka term document matrix of 6 words. In the case when a new unseen word is found, i would like it to be part of the unknown column. like for example (lol and 123) is not in the corpus. It should be part of the unknown column.
vcftools --vcf ALL.chr1.phase3_shapeit2_mvncall_integrated_v5.20130502.genotypes.vcf --weir-fst-pop POP1.txt --weir-fst-pop POP2.txt --out fst.POP1.POP2
The above script computes Fst distances on 1000 Genomes population data using Weir and Cokerham's 1984 formula. This formula uses 3 variance components, namely a,b,c (between populations; between individuals within populations; between gametes within individuals within populations).
The output directly provides the result of the formula but not the components that the program calculated to arrive at the final result. How can I ask Vcftools to output the values for a,b,c?
If you can get the data into the format for hierfstat, you can get the variance components from varcomp.glob. What I normally do is:
use vcftools with --012 to get genotypes
convert 0/1/2/-1 to hierfstat format (eg., 11/12/22/NA)
load the data into hierfstat and compute (see below)
R example:
library(hierfstat)
data = read.table("hierfstat.txt", header=T, sep="\t")
levels = data.frame(data$popid)
loci = data[,2:ncol(data)]
res = varcomp.glob(levels=levels, loci=loci, diploid=T)
print(res$loc)
print(res$F)
Fst for each locus (row) therefore is (without hierarchical design), from res$loc: res$loc[1]/sum(res$loc). If you have more complicated sampling, you'll need to interpret the variance components differently.
--update per your comment--
I do this in Pandas, but any language would do. It's a text replacement exercise. Just get your .012 file into a dataframe and convert as below. I read in row by row into numpy b/c I have tons of snps, but read_csv would work, too.
import pandas as pd
import numpy as np
z12_data = []
for i, line in enumerate(open(z12_file)):
line = line.strip()
line = [int(x) for x in line.split("\t")]
z12_data.append(np.array(line))
if i % 10 == 0:
print i
z12_data = np.array(z12_data)
z12_df = pd.DataFrame(z12_data)
z12_df = z12_df.drop(0, axis=1)
z12_df.columns = pd.Series(z12_df.columns)-1
hierf_trans = {0:11, 1:12, 2:22, -1:'NA'}
def apply_hierf_trans(series):
return [hierf_trans[x] if x in hierf_trans else x for x in series]
hierf = df.apply(apply_hierf_trans)
hierf.to_csv("hierfstat.txt", header=True, index=False, sep="\t")
Then, you'd read that file hierfstat.txt into R, these are your loci. You'd need to specify your levels in your sampling design (e.g., your population). Then call varcomp.glob() to get the variance components. I have a parallel version of this here if you want to use it.
Note that you are specifying 0 as the reference allele, in this case. May be what you want, maybe not. I often calculate minor allele frequency and make 2 the minor allele, but it depends on your study goal.
Here is my problem.
I'm using sympy and a complex matrix P (all elements of P are complex valued).
I wanna extract the real/imaginary part of the first row.
So, I use the following sequence:
import sympy as sp
P = sp.Matrix([ [a+sp.I*b,c-sp.I*d], [c-sp.I*d,a+sp.I*b] ])
Row = P.row(0)
Row.as_mutable()
Re_row = sp.re(Row)
Im_row = sp.im(Row)
But the code returns me the following error:
"AttributeError: ImmutableMatrix has no attribute as_coefficient."
The error occurs during the operation sp.re(Row) and sp.im(Row)...
Sympy tells me that Row is an Immutable matrix but I specify that I want a mutable one...
So I'm in a dead end, and I don't have the solution...
Could someone plz help me ?
thank you very much !
Most SymPy functions won't work if you just pass a Matrix to them directly. You need to use the methods of the Matrix, or if there is not such method (as is the case here), use applyfunc
In [34]: Row.applyfunc(re)
Out[34]: [re(a) - im(b) re(c) + im(d)]
In [35]: Row.applyfunc(im)
Out[35]: [re(b) + im(a) -re(d) + im(c)]
(I've defined a, b, c, and d as just ordinary symbols here, if you set them as real the answer will come out much simpler).