For an application that we built, we are using a simple statistical model for word prediction (like Google Autocomplete) to guide search.
It uses a sequence of ngrams gathered from a large corpus of relevant text documents. By considering the previous N-1 words, it suggests the 5 most likely "next words" in descending order of probability, using Katz back-off.
We would like to extend this to predict phrases (multiple words) instead of a single word. However, when we are predicting a phrase, we would prefer not to display its prefixes.
For example, consider the input the cat.
In this case we would like to make predictions like the cat in the hat, but not the cat in & not the cat in the.
Assumptions:
We do not have access to past search statistics
We do not have tagged text data (for instance, we do not know the parts of speech)
What is a typical way to make these kinds of multi-word predictions? We've tried multiplicative and additive weighting of longer phrases, but our weights are arbitrary and overfit to our tests.
For this question, you need to define what it is you consider to be a valid completion -- then it should be possible to come up with a solution.
In the example you've given, "the cat in the hat" is much better than "the cat in the". I could interpret this as, "it should end with a noun" or "it shouldn't end with overly common words".
You've restricted the use of "tagged text data" but you could use a pretrained model, (e.g. NLTK, spacy, StanfordNLP) to guess the parts of speech and make an attempt to restrict predictions to only complete noun-phrases (or sequence ending in noun). Note that you would not necessarily need to tag all documents fed into the model, but only those phrases you're keeping in your autocomplete db.
Alternately, you could avoid completions that end in stopwords (or very high frequency words). Both "in" and "the" are words that occur in almost all English documents, so you could experimentally find a frequency cutoff (can't end in a word that occurs in more than 50% of documents) that help you filter. You could also look at phrases -- if the end of the phrase is drastically more common as a shorter phrase, then it doesn't make sense to tag it on, as the user could come up with it on their own.
Ultimately, you could create a labeled set of good and bad instances and try to create a supervised re-ranker based on word features -- both ideas above could be strong features in a supervised model (document frequency = 2, pos tag = 1). This is typically how search engines with data can do it. Note that you don't need search statistics or users for this, just a willingness to label the top-5 completions for a few hundred queries. Building a formal evaluation (that can be run in an automated manner) would probably help when trying to improve the system in the future. Any time you observe a bad completion, you could add it to the database and do a few labels -- over time, a supervised approach would get better.
Not quite sure if this is the right place or not..
But here is my question.
So for features which are numeric in nature, it is quite natural to represent them, plot them, etc., but what about words?
How do you deal with data where you have words as features? So let's say I have a dataset with following features:
InventoryVal, Number of Units, Avg Price, Category of Event and so on..
InventoryVal is a number
Number of Units is a number
Avg Price is a number
Category of Event is a word that is assigned by humans.
Event if I replace category (example) "books" by an id...... (say 1) but then that is also something which I have assigned and that's not something intrinsic of data.
What is a good metric to represent that a product belongs to category "art" without artificially assigning anything?
Eghh.. too vague or loosely worded question?/
So as you might have guessed there are entire ML libraries directed to this problem, but if you just want to get started, the simplest (and perhaps most common) is word frequency. In other words, you represent each word as a feature whose value is a function of the number of times that words occurs in each document.
But the most common words (a, and, the, this, etc.) are the most commonly occurring (in ordinary text documents (e.g, email messages) but are hardly the most important, so it is common to express a word feature as the inverse of it's frequency.
So again, this is the simplest methodology (bag of words is how it's usually referred to); more sophisticated analysis (which are not always required) pre-process the individual words to categorize them into e.g., parts-of-speech analysis.
If you like python, i recommend NLTK (Natural Language Tool Kit) is a mature and well-documented python library. There are quite a few "getting started" tutorials, but perhaps begin with ones created by the NLTK contributors and which are referenced on the NLTK homepage; these tutorials usually rely on corpus (data set) included in the base NLTK install.
If you are using an existing machine learning package, or a packaged machine learning algorithm, there may be a way to tell it that a particular field holds e.g. integers which are to be treated as identifiers, in which only comparisons for equality and inequality make sense. If not, if there are only a small number of distinct categories, it might make sense to replace a category field with 10 values with 10 binary fields, holding 1 if the object is in that particular category, or 0 if not (or 9 fields, with the object in the 10th category if all of them are 0).
I have a few tens of thousands of short documents, consisting of 10 to 20 English sentences each (as well as some other non-sentence stuff like possibly HTML formatting or other "junk"). These documents are chopped out of other longer documents - in other words the shorter document "A1" might be sentence 10 through 20 of original document "A" and another shorter document "A2" might be sentence 11 through 25 of the same document original document "A" , and some of the original source documents might be summaries or copies of other original source documents, so that original source document "B" might also have sentences 10 through 20 of original source document "A", although not necessarily in the same location. And that same group of sentences might have been extracted from "B" into another short document "B3".
For each sentence, or at least each sentence over a certain length (say, > 3 words long), I'd like to produce a list of every short document that sentence occurs in. I'd like to scan the existing shorter documents and produce that index, and also update that index as I break up further longer original source documents into shorter documents.
I'm thinking what I need is some code to make an efficient hash code for a sentence which has a very low likelihood of producing the same hash code for two different sentences. Is the hash algorithm used in Java String.hashCode() a good choice for that? MD5 or other cryptographic hash seems like it would be too expensive and overkill for this purpose.
I recently evaluated hash algorithms with the requirement that in a few million inputs there should be virtually no possibility of hash collision, and the hashing must be very fast. CityHash was the winner, hands-down.
If you're interested in calculating the probability of a hash collision, that subject is sometimes referred to as the Birthday Problem. The math behind it is here:
https://sites.google.com/site/craigandera/craigs-stuff/odds-ends/the-birthday-problem-calculator
More broadly, you would probably benefit from reading this book. The structure you are describing is a classic inverted index: the book describes efficient algorithms for creating, updating and performing interesting queries on them.
We were set an algorithm problem in class today, as a "if you figure out a solution you don't have to do this subject". SO of course, we all thought we will give it a go.
Basically, we were provided a DB of 100 words and 10 categories. There is no match between either the words or the categories. So its basically a list of 100 words, and 10 categories.
We have to "place" the words into the correct category - that is, we have to "figure out" how to put the words into the correct category. Thus, we must "understand" the word, and then put it in the most appropriate category algorthmically.
i.e. one of the words is "fishing" the category "sport" --> so this would go into this category. There is some overlap between words and categories such that some words could go into more than one category.
If we figure it out, we have to increase the sample size and the person with the "best" matching % wins.
Does anyone have ANY idea how to start something like this? Or any resources ? Preferably in C#?
Even a keyword DB or something might be helpful ? Anyone know of any free ones?
First of all you need sample text to analyze, to get the relationship of words.
A categorization with latent semantic analysis is described in Latent Semantic Analysis approaches to categorization.
A different approach would be naive bayes text categorization. Sample text with the assigned category are needed. In a learning step the program learns the different categories and the likelihood that a word occurs in a text assigned to a category, see bayes spam filtering. I don't know how well that works with single words.
Really poor answer (demonstrates no "understanding") - but as a crazy stab you could hit google (through code) for (for example) "+Fishing +Sport", "+Fishing +Cooking" etc (i.e. cross join each word and category) - and let the google fight win! i.e. the combination with the most "hits" gets chosen...
For example (results first):
weather: fish
sport: ball
weather: hat
fashion: trousers
weather: snowball
weather: tornado
With code (TODO: add threading ;-p):
static void Main() {
string[] words = { "fish", "ball", "hat", "trousers", "snowball","tornado" };
string[] categories = { "sport", "fashion", "weather" };
using(WebClient client = new WebClient()){
foreach(string word in words) {
var bestCategory = categories.OrderByDescending(
cat => Rank(client, word, cat)).First();
Console.WriteLine("{0}: {1}", bestCategory, word);
}
}
}
static int Rank(WebClient client, string word, string category) {
string s = client.DownloadString("http://www.google.com/search?q=%2B" +
Uri.EscapeDataString(word) + "+%2B" +
Uri.EscapeDataString(category));
var match = Regex.Match(s, #"of about \<b\>([0-9,]+)\</b\>");
int rank = match.Success ? int.Parse(match.Groups[1].Value, NumberStyles.Any) : 0;
Debug.WriteLine(string.Format("\t{0} / {1} : {2}", word, category, rank));
return rank;
}
Maybe you are all making this too hard.
Obviously, you need an external reference of some sort to rank the probability that X is in category Y. Is it possible that he's testing your "out of the box" thinking and that YOU could be the external reference? That is, the algorithm is a simple matter of running through each category and each word and asking YOU (or whoever sits at the terminal) whether word X is in the displayed category Y. There are a few simple variations on this theme but they all involve blowing past the Gordian knot by simply cutting it.
Or not...depends on the teacher.
So it seems you have a couple options here, but for the most part I think if you want accurate data you are going to need to use some outside help. Two options that I can think of would be to make use of a dictionary search, or crowd sourcing.
In regards to a dictionary search, you could just go through the database, query it and parse the results to see if one of the category names is displayed on the page. For example, if you search "red" you will find "color" on the page and likewise, searching for "fishing" returns "sport" on the page.
Another, slightly more outside the box option would be to make use of crowd sourcing, consider the following:
Start by more or less randomly assigning name-value pairs.
Output the results.
Load the results up on Amazon Mechanical Turk (AMT) to get feedback from humans on how well the pairs work.
Input the results of the AMT evaluation back into the system along with the random assignments.
If everything was approved, then we are done.
Otherwise, retain the correct hits and process them to see if any pattern can be established, generate a new set of name-value pairs.
Return to step 3.
Granted this would entail some financial outlay, but it might also be one of the simplest and accurate versions of the data you are going get on a fairly easy basis.
You could do a custom algorithm to work specifically on that data, for instance words ending in 'ing' are verbs (present participle) and could be sports.
Create a set of categorization rules like the one above and see how high an accuracy you get.
EDIT:
Steal the wikipedia database (it's free anyway) and get the list of articles under each of your ten categories. Count the occurrences of each of your 100 words in all the articles under each category, and the category with the highest 'keyword density' of that word (e.g. fishing) wins.
This sounds like you could use some sort of Bayesian classification as it is used in spam filtering. But this would still require "external data" in the form of some sort of text base that provides context.
Without that, the problem is impossible to solve. It's not an algorithm problem, it's an AI problem. But even AI (and natural intelligence as well, for that matter) needs some sort of input to learn from.
I suspect that the professor is giving you an impossible problem to make you understand at what different levels you can think about a problem.
The key question here is: who decides what a "correct" classification is? What is this decision based on? How could this decision be reproduced programmatically, and what input data would it need?
I am assuming that the problem allows using external data, because otherwise I cannot conceive of a way to deduce the meaning from words algorithmically.
Maybe something could be done with a thesaurus database, and looking for minimal distances between 'word' words and 'category' words?
Fire this teacher.
The only solution to this problem is to already have the solution to the problem. Ie. you need a table of keywords and categories to build your code that puts keywords into categories.
Unless, as you suggest, you add a system which "understands" english. This is the person sitting in front of the computer, or an expert system.
If you're building an expert system and doesn't even know it, the teacher is not good at giving problems.
Google is forbidden, but they have almost a perfect solution - Google Sets.
Because you need to unterstand the semantics of the words you need external datasources. You could try using WordNet. Or you could maybe try using Wikipedia - find the page for every word (or maybe only for the categories) and look for other words appearing on the page or linked pages.
Yeah I'd go for the wordnet approach.
Check this tutorial on WordNet-based semantic similarity measurement. You can query Wordnet online at princeton.edu (google it) so it should be relatively easy to code a solution for your problem.
Hope this helps,
X.
Interesting problem. What you're looking at is word classification. While you can learn and use traditional information retrieval methods like LSA and categorization based on such - I'm not sure if that is your intent (if it is, then do so by all means! :)
Since you say you can use external data, I would suggest using wordnet and its link between words. For instance, using wordnet,
# S: (n) **fishing**, sportfishing (the act of someone who fishes as a diversion)
* direct hypernym / inherited hypernym / sister term
o S: (n) **outdoor sport, field sport** (a sport that is played outdoors)
+ direct hypernym / inherited hypernym / sister term
# S: (n) **sport**, athletics
(an active diversion requiring physical exertion and competition)
What we see here is a list of relationships between words. The term fishing relates to outdoor sport, which relates to sport.
Now, if you get the drift - it is possible to use this relationship to compute a probability of classifying "fishing" to "sport" - say, based on the linear distance of the word-chain, or number of occurrences, et al. (should be trivial to find resources on how to construct similarity measures using wordnet. when the prof says "not to use google", I assume he means programatically and not as a means to get information to read up on!)
As for C# with wordnet - how about http://opensource.ebswift.com/WordNet.Net/
My first thought would be to leverage external data. Write a program that google-searches each word, and takes the 'category' that appears first/highest in the search results :)
That might be considered cheating, though.
Well, you can't use Google, but you CAN use Yahoo, Ask, Bing, Ding, Dong, Kong...
I would do a few passes. First query the 100 words against 2-3 search engines, grab the first y resulting articles (y being a threshold to experiment with. 5 is a good start I think) and scan the text. In particular I"ll search for the 10 categories. If a category appears more than x time (x again being some threshold you need to experiment with) its a match.
Based on that x threshold (ie how many times a category appears in the text) and how may of the top y pages it appears in you can assign a weigh to a word-category pair.
for better accuracy you can then do another pass with those non-google search engines with the word-category pair (with a AND relationship) and apply the number of resulting pages to the weight of that pair. Them simply assume the word-category pair with highest weight is the right one (assuming you'll even have more than one option). You can also multi assign a word to a multiple category if the weights are close enough (z threshold maybe).
Based on that you can introduce any number of words and any number of categories. And You'll win your challenge.
I also think this method is good to evaluate the weight of potential adwords in advertising. but that's another topic....
Good luck
Harel
Use (either online, or download) WordNet, and find the number of relationships you have to follow between words and each category.
Use an existing categorized large data set such as RCV1 to train your system of choice. You could do worse then to start reading existing research and benchmarks.
Appart from Google there exist other 'encyclopedic" datasets you can build of, some of them hosted as public data sets on Amazon Web Services, such as a complete snapshot of the English language Wikipedia.
Be creative. There is other data out there besides Google.
My attempt would be to use the toolset of CRM114 to provide a way to analyze a big corpus of text. Then you can utilize the matchings from it to give a guess.
My naive approach:
Create a huge text file like this (read the article for inspiration)
For every word, scan the text and whenever you match that word, count the 'categories' that appear in N (maximum, aka radio) positions left and right of it.
The word is likely to belong in the category with the greatest counter.
Scrape delicious.com and search for each word, looking at collective tag counts, etc.
Not much more I can say about that, but delicious is old, huge, incredibly-heavily tagged and contains a wealth of current relevant semantic information to draw from. It would be very easy to build a semantics database this way, using your word list as a basis from scraping.
The knowledge is in the tags.
As you don't need to attend the subject when you solve this 'riddle' it's not supposed to be easy I think.
Nevertheless I would do something like this (told in a very simplistic way)
Build up a Neuronal Network which you give some input (a (e)book, some (e)books)
=> no google needed
this network classifies words (Neural networks are great for 'unsure' classification). I think you may simply know which word belongs to which category because of the occurences in the text. ('fishing' is likely to be mentioned near 'sports').
After some training of the neural network it should "link" you the words to the categories.
You might be able to put use the WordNet database, create some metric to determine how closely linked two words (the word and the category) are and then choose the best category to put the word in.
You could implement a learning algorithm to do this using a monte carlo method and human feedback. Have the system randomly categorize words, then ask you to vote them as "match" or "not match." If it matches, the word is categorized and can be eliminated. If not, the system excludes it from that category in future iterations since it knows it doesn't belong there. This will get very accurate results.
This will work for the 100 word problem fairly easily. For the larger problem, you could combine this with educated guessing to make the process work faster. Here, as many people above have mentioned, you will need external sources. The google method would probably work the best, since google's already done a ton of work on it, but barring that you could, for example, pull data from your facebook account using the facebook apis and try to figure out which words are statistically more likely to appear with previously categorized words.
Either way, though, this cannot be done without some kind of external input that at some point came from a human. Unless you want to be cheeky and, for example, define the categories by some serialized value contained in the ascii text for the name :P
Nowadays, Microsoft and Google will index the files on your hard drive so that you can search their contents quickly.
What I want to know is how do they do this? Can you describe the algorithm?
The simple case is an inverted index.
The most basic algorithm is simply:
scan the file for words, creating a list of unique words
normalize and filter the words
place an entry tying that word to the file in your index
The details are where things get tricky, but the fundamentals are the same.
By "normalize and filter" the words, I mean things like converting everything to lowercase, removing common "stop words" (the, if, in, a etc.), possibly "stemming" (removing common suffixes for verbs and plurals and such).
After that, you've got a unique list of words for the file and you can build your index off of that.
There are optimizations for reducing storage, techniques for checking locality of words (is "this" near "that" in the document, for example).
But, that's the fundamental way it's done.
Here's a really basic description; for more details, you can read this textbook (free online): http://informationretrieval.org/¹
1). For all files, create an index. The index consists of all unique words that occur in your dataset (called a "corpus"). With each word, a list of document ids is associated; each document id refers to a document that contains the word.
Variations: sometimes when you generate the index you want to ignore stop words ("a", "the", etc). You have to be careful, though ("to be or not to be" is a real query composed of stopwords).
Sometimes you also stem the words. This has more impact on search quality in non-English languages that use suffixes and prefixes to a greater extent.
2) When a user enters a query, look up the corresponding lists, and merge them. If it's a strict boolean query, the process is pretty straightforward -- for AND, a docid has to occur in all the word lists, for OR, in at least one wordlist, etc.
3) If you want to rank your results, there are a number of ways to do that, but the basic idea is to use the frequency with which a word occurs in a document, as compared to the frequency you expect it to occur in any document in the corpus, as a signal that the document is more or less relevant. See textbook.
4) You can also store word positions to infer phrases, etc.
Most of that is irrelevant for desktop search, as you are more interested in recall (all documents that include the term) than ranking.
¹ previously on http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html, accessible via wayback machine
You could always look into something like Apache Lucene.
Apache Lucene is a high-performance, full-featured text search engine library written entirely in Java. It is a technology suitable for nearly any application that requires full-text search, especially cross-platform.