Checking if Table A contains Table B - algorithm

I am a beginner in programming, especially in Scilab.
I need your help to write this short algorithm:
We have 2, sorted, non-decreasing tables A=[1,2,2,2,3,4,4,4,5,8,10] and B=[2,2,3,4,4,4].
Table A will always be bigger then Table B.
I need your help constructing The algorytm for checking whether the table B is contained entirely in the table A (without violating the order of the elements of the B array).
So for tables A=[1,2,2,2,3,4,4,4,5,8,10] and B=[2,2,3,4,4,4] the condition is met.
i have this for now
function sprawdz (A,B, n, m)
A=[2 3 0 5 1 1 2]
B=[3 0 5 1]
n=length(A)
m=length(B)
i=1
j=1
while (i<n && j<m)
if A(i)==B(j) then
i=i+1
j=j+1
if (j==m) then
return %t
break
end
else
i=i+1
j=1
end
end
return %f
if sprawdz (A,B, n, m) == %t then
disp("spoko")
else
disp("nie")
end
endfunction

In Scilab language, we can simply write vectorfind(A,B) that returns all positions in A where B is met and starts:
--> A = [1,2,2,2,3,4,4,4,5,8,10], B = [2,2,3,4,4,4]
A =
1. 2. 2. 2. 3. 4. 4. 4. 5. 8. 10.
B =
2. 2. 3. 4. 4. 4.
--> vectorfind(A, B)
ans =
3.
vectorfind() does not require from A or/and B to be sorted.
In addition, it can work with some wildcards. A is an array with any number of dimensions: 1D (vector), 2D (matrix), 3D, .. ND
If you just need a boolean answer:
vectorfind(A,B)<>[]
For illustrated examples or more information: https://help.scilab.org/docs/6.1.1/en_US/vectorfind.html

below code checks if an array contains all elements in another array:
public static boolean linearIn(Integer[] outer, Integer[] inner) {
return Arrays.asList(outer).containsAll(Arrays.asList(inner));
}
In your case there will be your two array
Another approch if you want to check contiguous subsequence
Simple Approach:
A simple approach is to run two nested loops and generate all subarrays of the array A[] and use one more loop to check if any of the subarray of A[] is equal to the array B[].
Efficient Approach :
An efficient approach is to use two pointers to traverse both the array simultaneously. Keep the pointer of array B[] still and if any element of A[] matches with the first element of B[] then increase the pointer of both the array else set the pointer of A to the next element of the previous starting point and reset the pointer of B to 0. If all the elements of B are matched then print YES otherwise print NO.
Below is the implementation of the above approach:
class SubTable
{
// Function to check if an array is subarray of another array
static boolean isSubArray(int A[], int B[],
int n, int m)
{
// Two pointers to traverse the arrays
int i = 0, j = 0;
// Traverse both arrays simultaneously
while (i < n && j < m)
{
// If element matches
// increment both pointers
if (A[i] == B[j])
{
i++;
j++;
// If array B is completely
// traversed
if (j == m)
return true;
}
// If not,
// increment i and reset j
else
{
i = i - j + 1;
j = 0;
}
}
return false;
}
public static void main(String arr[])
{
int A[] = { 2, 3, 0, 5, 1, 1, 2 };
int n = A.length;
int B[] = { 3, 0, 5, 1 };
int m = B.length;
if (isSubArray(A, B, n, m))
System.out.println("YES");
else
System.out.println("NO");
}
}

Related

How to maintain a min sliding window for an unsorted array? [duplicate]

Given an array of size n and k, how do you find the maximum for every contiguous subarray of size k?
For example
arr = 1 5 2 6 3 1 24 7
k = 3
ans = 5 6 6 6 24 24
I was thinking of having an array of size k and each step evict the last element out and add the new element and find maximum among that. It leads to a running time of O(nk). Is there a better way to do this?
You have heard about doing it in O(n) using dequeue.
Well that is a well known algorithm for this question to do in O(n).
The method i am telling is quite simple and has time complexity O(n).
Your Sample Input:
n=10 , W = 3
10 3
1 -2 5 6 0 9 8 -1 2 0
Answer = 5 6 6 9 9 9 8 2
Concept: Dynamic Programming
Algorithm:
N is number of elements in an array and W is window size. So, Window number = N-W+1
Now divide array into blocks of W starting from index 1.
Here divide into blocks of size 'W'=3.
For your sample input:
We have divided into blocks because we will calculate maximum in 2 ways A.) by traversing from left to right B.) by traversing from right to left.
but how ??
Firstly, Traversing from Left to Right. For each element ai in block we will find maximum till that element ai starting from START of Block to END of that block.
So here,
Secondly, Traversing from Right to Left. For each element 'ai' in block we will find maximum till that element 'ai' starting from END of Block to START of that block.
So Here,
Now we have to find maximum for each subarray or window of size 'W'.
So, starting from index = 1 to index = N-W+1 .
max_val[index] = max(RL[index], LR[index+w-1]);
for index=1: max_val[1] = max(RL[1],LR[3]) = max(5,5)= 5
Simliarly, for all index i, (i<=(n-k+1)), value at RL[i] and LR[i+w-1]
are compared and maximum among those two is answer for that subarray.
So Final Answer : 5 6 6 9 9 9 8 2
Time Complexity: O(n)
Implementation code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LIM 100001
using namespace std;
int arr[LIM]; // Input Array
int LR[LIM]; // maximum from Left to Right
int RL[LIM]; // maximum from Right to left
int max_val[LIM]; // number of subarrays(windows) will be n-k+1
int main(){
int n, w, i, k; // 'n' is number of elements in array
// 'w' is Window's Size
cin >> n >> w;
k = n - w + 1; // 'K' is number of Windows
for(i = 1; i <= n; i++)
cin >> arr[i];
for(i = 1; i <= n; i++){ // for maximum Left to Right
if(i % w == 1) // that means START of a block
LR[i] = arr[i];
else
LR[i] = max(LR[i - 1], arr[i]);
}
for(i = n; i >= 1; i--){ // for maximum Right to Left
if(i == n) // Maybe the last block is not of size 'W'.
RL[i] = arr[i];
else if(i % w == 0) // that means END of a block
RL[i] = arr[i];
else
RL[i] = max(RL[i+1], arr[i]);
}
for(i = 1; i <= k; i++) // maximum
max_val[i] = max(RL[i], LR[i + w - 1]);
for(i = 1; i <= k ; i++)
cout << max_val[i] << " ";
cout << endl;
return 0;
}
Running Code Link
I'll try to proof: (by #johnchen902)
If k % w != 1 (k is not the begin of a block)
Let k* = The begin of block containing k
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= max( max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k*]),
max( arr[k*], arr[k* + 1], arr[k* + 2], ..., arr[k + w - 1]) )
= max( RL[k], LR[k+w-1] )
Otherwise (k is the begin of a block)
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= RL[k] = LR[k+w-1]
= max( RL[k], LR[k+w-1] )
Dynamic programming approach is very neatly explained by Shashank Jain. I would like to explain how to do the same using dequeue.
The key is to maintain the max element at the top of the queue(for a window ) and discarding the useless elements and we also need to discard the elements that are out of index of current window.
useless elements = If Current element is greater than the last element of queue than the last element of queue is useless .
Note : We are storing the index in queue not the element itself. It will be more clear from the code itself.
1. If Current element is greater than the last element of queue than the last element of queue is useless . We need to delete that last element.
(and keep deleting until the last element of queue is smaller than current element).
2. If if current_index - k >= q.front() that means we are going out of window so we need to delete the element from front of queue.
vector<int> max_sub_deque(vector<int> &A,int k)
{
deque<int> q;
for(int i=0;i<k;i++)
{
while(!q.empty() && A[i] >= A[q.back()])
q.pop_back();
q.push_back(i);
}
vector<int> res;
for(int i=k;i<A.size();i++)
{
res.push_back(A[q.front()]);
while(!q.empty() && A[i] >= A[q.back()] )
q.pop_back();
while(!q.empty() && q.front() <= i-k)
q.pop_front();
q.push_back(i);
}
res.push_back(A[q.front()]);
return res;
}
Since each element is enqueued and dequeued atmost 1 time to time complexity is O(n+n) = O(2n) = O(n).
And the size of queue can not exceed the limit k . so space complexity = O(k).
An O(n) time solution is possible by combining the two classic interview questions:
Make a stack data-structure (called MaxStack) which supports push, pop and max in O(1) time.
This can be done using two stacks, the second one contains the minimum seen so far.
Model a queue with a stack.
This can done using two stacks. Enqueues go into one stack, and dequeues come from the other.
For this problem, we basically need a queue, which supports enqueue, dequeue and max in O(1) (amortized) time.
We combine the above two, by modelling a queue with two MaxStacks.
To solve the question, we queue k elements, query the max, dequeue, enqueue k+1 th element, query the max etc. This will give you the max for every k sized sub-array.
I believe there are other solutions too.
1)
I believe the queue idea can be simplified. We maintain a queue and a max for every k. We enqueue a new element, and dequeu all elements which are not greater than the new element.
2) Maintain two new arrays which maintain the running max for each block of k, one array for one direction (left to right/right to left).
3) Use a hammer: Preprocess in O(n) time for range maximum queries.
The 1) solution above might be the most optimal.
You need a fast data structure that can add, remove and query for the max element in less than O(n) time (you can just use an array if O(n) or O(nlogn) is acceptable). You can use a heap, a balanced binary search tree, a skip list, or any other sorted data structure that performs these operations in O(log(n)).
The good news is that most popular languages have a sorted data structure implemented that supports these operations for you. C++ has std::set and std::multiset (you probably need the latter) and Java has PriorityQueue and TreeSet.
Here is the java implementation
public static Integer[] maxsInEveryWindows(int[] arr, int k) {
Deque<Integer> deque = new ArrayDeque<Integer>();
/* Process first k (or first window) elements of array */
for (int i = 0; i < k; i++) {
// For very element, the previous smaller elements are useless so
// remove them from deque
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast(); // Remove from rear
}
// Add new element at rear of queue
deque.addLast(i);
}
List<Integer> result = new ArrayList<Integer>();
// Process rest of the elements, i.e., from arr[k] to arr[n-1]
for (int i = k; i < arr.length; i++) {
// The element at the front of the queue is the largest element of
// previous window, so add to result.
result.add(arr[deque.getFirst()]);
// Remove all elements smaller than the currently
// being added element (remove useless elements)
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast();
}
// Remove the elements which are out of this window
while (!deque.isEmpty() && deque.getFirst() <= i - k) {
deque.removeFirst();
}
// Add current element at the rear of deque
deque.addLast(i);
}
// Print the maximum element of last window
result.add(arr[deque.getFirst()]);
return result.toArray(new Integer[0]);
}
Here is the corresponding test case
#Test
public void maxsInWindowsOfSizeKTest() {
Integer[] result = ArrayUtils.maxsInEveryWindows(new int[]{1, 2, 3, 1, 4, 5, 2, 3, 6}, 3);
assertThat(result, equalTo(new Integer[]{3, 3, 4, 5, 5, 5, 6}));
result = ArrayUtils.maxsInEveryWindows(new int[]{8, 5, 10, 7, 9, 4, 15, 12, 90, 13}, 4);
assertThat(result, equalTo(new Integer[]{10, 10, 10, 15, 15, 90, 90}));
}
Using a heap (or tree), you should be able to do it in O(n * log(k)). I'm not sure if this would be indeed better.
here is the Python implementation in O(1)...Thanks to #Shahshank Jain in advance..
from sys import stdin,stdout
from operator import *
n,w=map(int , stdin.readline().strip().split())
Arr=list(map(int , stdin.readline().strip().split()))
k=n-w+1 # window size = k
leftA=[0]*n
rightA=[0]*n
result=[0]*k
for i in range(n):
if i%w==0:
leftA[i]=Arr[i]
else:
leftA[i]=max(Arr[i],leftA[i-1])
for i in range(n-1,-1,-1):
if i%w==(w-1) or i==n-1:
rightA[i]=Arr[i]
else:
rightA[i]=max(Arr[i],rightA[i+1])
for i in range(k):
result[i]=max(rightA[i],leftA[i+w-1])
print(*result,sep=' ')
Method 1: O(n) time, O(k) space
We use a deque (it is like a list but with constant-time insertion and deletion from both ends) to store the index of useful elements.
The index of the current max is kept at the leftmost element of deque. The rightmost element of deque is the smallest.
In the following, for easier explanation we say an element from the array is in the deque, while in fact the index of that element is in the deque.
Let's say {5, 3, 2} are already in the deque (again, if fact their indexes are).
If the next element we read from the array is bigger than 5 (remember, the leftmost element of deque holds the max), say 7: We delete the deque and create a new one with only 7 in it (we do this because the current elements are useless, we have found a new max).
If the next element is less than 2 (which is the smallest element of deque), say 1: We add it to the right ({5, 3, 2, 1})
If the next element is bigger than 2 but less than 5, say 4: We remove elements from right that are smaller than the element and then add the element from right ({5, 4}).
Also we keep elements of the current window only (we can do this in constant time because we are storing the indexes instead of elements).
from collections import deque
def max_subarray(array, k):
deq = deque()
for index, item in enumerate(array):
if len(deq) == 0:
deq.append(index)
elif index - deq[0] >= k: # the max element is out of the window
deq.popleft()
elif item > array[deq[0]]: # found a new max
deq = deque()
deq.append(index)
elif item < array[deq[-1]]: # the array item is smaller than all the deque elements
deq.append(index)
elif item > array[deq[-1]] and item < array[deq[0]]:
while item > array[deq[-1]]:
deq.pop()
deq.append(index)
if index >= k - 1: # start printing when the first window is filled
print(array[deq[0]])
Proof of O(n) time: The only part we need to check is the while loop. In the whole runtime of the code, the while loop can perform at most O(n) operations in total. The reason is that the while loop pops elements from the deque, and since in other parts of the code, we do at most O(n) insertions into the deque, the while loop cannot exceed O(n) operations in total. So the total runtime is O(n) + O(n) = O(n)
Method 2: O(n) time, O(n) space
This is the explanation of the method suggested by S Jain (as mentioned in the comments of his post, this method doesn't work with data streams, which most sliding window questions are designed for).
The reason that method works is explained using the following example:
array = [5, 6, 2, 3, 1, 4, 2, 3]
k = 4
[5, 6, 2, 3 1, 4, 2, 3 ]
LR: 5 6 6 6 1 4 4 4
RL: 6 6 3 3 4 4 3 3
6 6 4 4 4
To get the max for the window [2, 3, 1, 4],
we can get the max of [2, 3] and max of [1, 4], and return the bigger of the two.
Max of [2, 3] is calculated in the RL pass and max of [1, 4] is calculated in LR pass.
Using Fibonacci heap, you can do it in O(n + (n-k) log k), which is equal to O(n log k) for small k, for k close to n this becomes O(n).
The algorithm: in fact, you need:
n inserts to the heap
n-k deletions
n-k findmax's
How much these operations cost in Fibonacci heaps? Insert and findmax is O(1) amortized, deletion is O(log n) amortized. So, we have
O(n + (n-k) log k + (n-k)) = O(n + (n-k) log k)
Sorry, this should have been a comment but I am not allowed to comment for now.
#leo and #Clay Goddard
You can save yourselves from re-computing the maximum by storing both maximum and 2nd maximum of the window in the beginning
(2nd maximum will be the maximum only if there are two maximums in the initial window). If the maximum slides out of the window you still have the next best candidate to compare with the new entry. So you get O(n) , otherwise if you allowed the whole re-computation again the worst case order would be O(nk), k is the window size.
class MaxFinder
{
// finds the max and its index
static int[] findMaxByIteration(int arr[], int start, int end)
{
int max, max_ndx;
max = arr[start];
max_ndx = start;
for (int i=start; i<end; i++)
{
if (arr[i] > max)
{
max = arr[i];
max_ndx = i;
}
}
int result[] = {max, max_ndx};
return result;
}
// optimized to skip iteration, when previous windows max element
// is present in current window
static void optimizedPrintKMax(int arr[], int n, int k)
{
int i, j, max, max_ndx;
// for first window - find by iteration.
int result[] = findMaxByIteration(arr, 0, k);
System.out.printf("%d ", result[0]);
max = result[0];
max_ndx = result[1];
for (j=1; j <= (n-k); j++)
{
// if previous max has fallen out of current window, iterate and find
if (max_ndx < j)
{
result = findMaxByIteration(arr, j, j+k);
max = result[0];
max_ndx = result[1];
}
// optimized path, just compare max with new_elem that has come into the window
else
{
int new_elem_ndx = j + (k-1);
if (arr[new_elem_ndx] > max)
{
max = arr[new_elem_ndx];
max_ndx = new_elem_ndx;
}
}
System.out.printf("%d ", max);
}
}
public static void main(String[] args)
{
int arr[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
//int arr[] = {1,5,2,6,3,1,24,7};
int n = arr.length;
int k = 3;
optimizedPrintKMax(arr, n, k);
}
}
package com;
public class SlidingWindow {
public static void main(String[] args) {
int[] array = { 1, 5, 2, 6, 3, 1, 24, 7 };
int slide = 3;//say
List<Integer> result = new ArrayList<Integer>();
for (int i = 0; i < array.length - (slide-1); i++) {
result.add(getMax(array, i, slide));
}
System.out.println("MaxList->>>>" + result.toString());
}
private static Integer getMax(int[] array, int i, int slide) {
List<Integer> intermediate = new ArrayList<Integer>();
System.out.println("Initial::" + intermediate.size());
while (intermediate.size() < slide) {
intermediate.add(array[i]);
i++;
}
Collections.sort(intermediate);
return intermediate.get(slide - 1);
}
}
Here is the solution in O(n) time complexity with auxiliary deque
public class TestSlidingWindow {
public static void main(String[] args) {
int[] arr = { 1, 5, 7, 2, 1, 3, 4 };
int k = 3;
printMaxInSlidingWindow(arr, k);
}
public static void printMaxInSlidingWindow(int[] arr, int k) {
Deque<Integer> queue = new ArrayDeque<Integer>();
Deque<Integer> auxQueue = new ArrayDeque<Integer>();
int[] resultArr = new int[(arr.length - k) + 1];
int maxElement = 0;
int j = 0;
for (int i = 0; i < arr.length; i++) {
queue.add(arr[i]);
if (arr[i] > maxElement) {
maxElement = arr[i];
}
/** we need to maintain the auxiliary deque to maintain max element in case max element is removed.
We add the element to deque straight away if subsequent element is less than the last element
(as there is a probability if last element is removed this element can be max element) otherwise
remove all lesser element then insert current element **/
if (auxQueue.size() > 0) {
if (arr[i] < auxQueue.peek()) {
auxQueue.push(arr[i]);
} else {
while (auxQueue.size() > 0 && (arr[i] > auxQueue.peek())) {
auxQueue.pollLast();
}
auxQueue.push(arr[i]);
}
}else {
auxQueue.push(arr[i]);
}
if (queue.size() > 3) {
int removedEl = queue.removeFirst();
if (maxElement == removedEl) {
maxElement = auxQueue.pollFirst();
}
}
if (queue.size() == 3) {
resultArr[j++] = maxElement;
}
}
for (int i = 0; i < resultArr.length; i++) {
System.out.println(resultArr[i]);
}
}
}
static void countDistinct(int arr[], int n, int k)
{
System.out.print("\nMaximum integer in the window : ");
// Traverse through every window
for (int i = 0; i <= n - k; i++) {
System.out.print(findMaximuminAllWindow(Arrays.copyOfRange(arr, i, arr.length), k)+ " ");
}
}
private static int findMaximuminAllWindow(int[] win, int k) {
// TODO Auto-generated method stub
int max= Integer.MIN_VALUE;
for(int i=0; i<k;i++) {
if(win[i]>max)
max=win[i];
}
return max;
}
arr = 1 5 2 6 3 1 24 7
We have to find the maximum of subarray, Right?
So, What is meant by subarray?
SubArray = Partial set and it should be in order and contiguous.
From the above array
{1,5,2} {6,3,1} {1,24,7} all are the subarray examples
n = 8 // Array length
k = 3 // window size
For finding the maximum, we have to iterate through the array, and find the maximum.
From the window size k,
{1,5,2} = 5 is the maximum
{5,2,6} = 6 is the maximum
{2,6,3} = 6 is the maximum
and so on..
ans = 5 6 6 6 24 24
It can be evaluated as the n-k+1
Hence, 8-3+1 = 6
And the length of an answer is 6 as we seen.
How can we solve this now?
When the data is moving from the pipe, the first thought for the data structure came in mind is the Queue
But, rather we are not discussing much here, we directly jump on the deque
Thinking Would be:
Window is fixed and data is in and out
Data is fixed and window is sliding
EX: Time series database
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
For the rest:
Print the front of queue
// purged expired element
While (queue not empty and queue.front() <= I-k) {
Queue.pop_front();
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
}
}
arr = [1, 2, 3, 1, 4, 5, 2, 3, 6]
k = 3
for i in range(len(arr)-k):
k=k+1
print (max(arr[i:k]),end=' ') #3 3 4 5 5 5 6
Two approaches.
Segment Tree O(nlog(n-k))
Build a maximum segment-tree.
Query between [i, i+k)
Something like..
public static void printMaximums(int[] a, int k) {
int n = a.length;
SegmentTree tree = new SegmentTree(a);
for (int i=0; i<=n-k; i++) System.out.print(tree.query(i, i+k));
}
Deque O(n)
If the next element is greater than the rear element, remove the rear element.
If the element in the front of the deque is out of the window, remove the front element.
public static void printMaximums(int[] a, int k) {
int n = a.length;
Deque<int[]> deck = new ArrayDeque<>();
List<Integer> result = new ArrayList<>();
for (int i=0; i<n; i++) {
while (!deck.isEmpty() && a[i] >= deck.peekLast()[0]) deck.pollLast();
deck.offer(new int[] {a[i], i});
while (!deck.isEmpty() && deck.peekFirst()[1] <= i - k) deck.pollFirst();
if (i >= k - 1) result.add(deck.peekFirst()[0]);
}
System.out.println(result);
}
Here is an optimized version of the naive (conditional) nested loop approach I came up with which is much faster and doesn't require any auxiliary storage or data structure.
As the program moves from window to window, the start index and end index moves forward by 1. In other words, two consecutive windows have adjacent start and end indices.
For the first window of size W , the inner loop finds the maximum of elements with index (0 to W-1). (Hence i == 0 in the if in 4th line of the code).
Now instead of computing for the second window which only has one new element, since we have already computed the maximum for elements of indices 0 to W-1, we only need to compare this maximum to the only new element in the new window with the index W.
But if the element at 0 was the maximum which is the only element not part of the new window, we need to compute the maximum using the inner loop from 1 to W again using the inner loop (hence the second condition maxm == arr[i-1] in the if in line 4), otherwise just compare the maximum of the previous window and the only new element in the new window.
void print_max_for_each_subarray(int arr[], int n, int k)
{
int maxm;
for(int i = 0; i < n - k + 1 ; i++)
{
if(i == 0 || maxm == arr[i-1]) {
maxm = arr[i];
for(int j = i+1; j < i+k; j++)
if(maxm < arr[j]) maxm = arr[j];
}
else {
maxm = maxm < arr[i+k-1] ? arr[i+k-1] : maxm;
}
cout << maxm << ' ';
}
cout << '\n';
}
You can use Deque data structure to implement this. Deque has an unique facility that you can insert and remove elements from both the ends of the queue unlike the traditional queue where you can only insert from one end and remove from other.
Following is the code for the above problem.
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int[] maxInWindow = new int[n - k + 1];
Deque<Integer> dq = new LinkedList<Integer>();
int i = 0;
for(; i<k; i++){
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
for(; i <n; i++){
maxInWindow[i - k] = nums[dq.peekFirst()];
while(!dq.isEmpty() && dq.peekFirst() <= i - k){
dq.removeFirst();
}
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
maxInWindow[i - k] = nums[dq.peekFirst()];
return maxInWindow;
}
the resultant array will have n - k + 1 elements where n is length of the given array, k is the given window size.
We can solve it using the Python , applying the slicing.
def sliding_window(a,k,n):
max_val =[]
val =[]
val1=[]
for i in range(n-k-1):
if i==0:
val = a[0:k+1]
print("The value in val variable",val)
val1 = max(val)
max_val.append(val1)
else:
val = a[i:i*k+1]
val1 =max(val)
max_val.append(val1)
return max_val
Driver Code
a = [15,2,3,4,5,6,2,4,9,1,5]
n = len(a)
k = 3
sl=s liding_window(a,k,n)
print(sl)
Create a TreeMap of size k. Put first k elements as keys in it and assign any value like 1(doesn't matter). TreeMap has the property to sort the elements based on key so now, first element in map will be min and last element will be max element. Then remove 1 element from the map whose index in the arr is i-k. Here, I have considered that Input elements are taken in array arr and from that array we are filling the map of size k. Since, we can't do anything with sorting happening inside TreeMap, therefore this approach will also take O(n) time.
100% working Tested (Swift)
func maxOfSubArray(arr:[Int],n:Int,k:Int)->[Int]{
var lenght = arr.count
var resultArray = [Int]()
for i in 0..<arr.count{
if lenght+1 > k{
let tempArray = Array(arr[i..<k+i])
resultArray.append(tempArray.max()!)
}
lenght = lenght - 1
}
print(resultArray)
return resultArray
}
This way we can use:
maxOfSubArray(arr: [1,2,3,1,4,5,2,3,6], n: 9, k: 3)
Result:
[3, 3, 4, 5, 5, 5, 6]
Just notice that you only have to find in the new window if:
* The new element in the window is smaller than the previous one (if it's bigger, it's for sure this one).
OR
* The element that just popped out of the window was the current bigger.
In this case, re-scan the window.
for how big k? for reasonable-sized k. you can create k k-sized buffers and just iterate over the array keeping track of max element pointers in the buffers - needs no data structures and is O(n) k^2 pre-allocation.
A complete working solution in Amortised Constant O(1) Complexity.
https://github.com/varoonverma/code-challenge.git
Compare the first k elements and find the max, this is your first number
then compare the next element to the previous max. If the next element is bigger, that is your max of the next subarray, if its equal or smaller, the max for that sub array is the same
then move on to the next number
max(1 5 2) = 5
max(5 6) = 6
max(6 6) = 6
... and so on
max(3 24) = 24
max(24 7) = 24
It's only slightly better than your answer

How will I solve this using DP?

Question link: http://codeforces.com/contest/2/problem/B
There is a square matrix n × n, consisting of non-negative integer numbers. You should find such a way on it that
starts in the upper left cell of the matrix;
each following cell is to the right or down from the current cell;
the way ends in the bottom right cell.
Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros.
Input
The first line contains an integer number n (2 ≤ n ≤ 1000), n is the size of the matrix. Then follow n lines containing the matrix elements (non-negative integer numbers not exceeding 10^9).
Output
In the first line print the least number of trailing zeros. In the second line print the correspondent way itself.
I thought of the following: In the end, whatever the answer will be, it should contain minimum powers of 2's and 5's. Therefore, what I did was, for each entry in the input matrix, I calculated the powers of 2's and 5's and stored them in separate matrices.
for (i = 0; i < n; i++)
{
for ( j = 0; j < n; j++)
{
cin>>foo;
matrix[i][j] = foo;
int n1 = calctwo(foo); // calculates the number of 2's in factorisation of that number
int n2 = calcfive(foo); // calculates number of 5's
two[i][j] = n1;
five[i][j] = n2;
}
}
After that, I did this:
for (i = 0; i < n; i++)
{
for ( j = 0; j < n; j++ )
{
dp[i][j] = min(two[i][j],five[i][j]); // Here, dp[i][j] will store minimum number of 2's and 5's.
}
}
But the above doesn't really a valid answer, I don't know why? Have I implemented the correct approach? Or, is this the correct way of solving this question?
Edit: Here are my functions of calculating the number of two's and number of five's in a number.
int calctwo (int foo)
{
int counter = 0;
while (foo%2 == 0)
{
if (foo%2 == 0)
{
counter++;
foo = foo/2;
}
else
break;
}
return counter;
}
int calcfive (int foo)
{
int counter = 0;
while (foo%5 == 0)
{
if (foo%5 == 0)
{
counter++;
foo = foo/5;
}
else
break;
}
return counter;
}
Edit2: I/O Example as given in the link:
Input:
3
1 2 3
4 5 6
7 8 9
Output:
0
DDRR
Since you are interested only in the number of trailing zeroes you need only to consider the powers of 2, 5 which you could keep in two separate nxn arrays. So for the array
1 2 3
4 5 6
7 8 9
you just keep the arrays
the powers of 2 the powers of 5
0 1 0 0 0 0
2 0 1 0 1 0
0 3 0 0 0 0
The insight for the problem is the following. Notice that if you find a path which minimizes the sum of the powers of 2 and a path which minimizes the number sum of the powers of 5 then the answer is the one with lower value of those two paths. So you reduce your problem to the two times application of the following classical dp problem: find a path, starting from the top-left corner and ending at the bottom-right, such that the sum of its elements is minimum. Again, following the example, we have:
minimal path for the
powers of 2 value
* * - 2
- * *
- - *
minimal path for the
powers of 5 value
* - - 0
* - -
* * *
so your answer is
* - -
* - -
* * *
with value 0
Note 1
It might seem that taking the minimum of the both optimal paths gives only an upper bound so a question that may rise is: is this bound actually achieved? The answer is yes. For convenience, let the number of 2's along the 2's optimal path is a and the number of 5's along the 5's optimal path is b. Without loss of generality assume that the minimum of the both optimal paths is the one for the power of 2's (that is a < b). Let the number of 5's along the minimal path is c. Now the question is: are there as much as 5's as there are 2's along this path (i.e. is c >= a?). Assume that the answer is no. That means that there are less 5's than 2's along the minimal path (that is c < a). Since the optimal value of 5's paths is b we have that every 5's path has at least b 5's in it. This should also be true for the minimal path. That means that c > b. We have that c < a so a > b but the initial assumption was that a < b. Contradiction.
Note 2
You might also want consider the case in which there is an element 0 in your matrix. I'd assume that number of trailing zeroes when the product is 1. In this case, if the algorithm has produced a result with a value more than 1 you should output 1 and print a path that goes through the element 0.
Here is the code. I've used pair<int,int> to store factor of 2 and 5 in the matrix.
#include<vector>
#include<iostream>
using namespace std;
#define pii pair<int,int>
#define F first
#define S second
#define MP make_pair
int calc2(int a){
int c=0;
while(a%2==0){
c++;
a/=2;
}
return c;
}
int calc5(int a){
int c=0;
while(a%5==0){
c++;
a/=5;
}
return c;
}
int mini(int a,int b){
return a<b?a:b;
}
pii min(pii a, pii b){
if(mini(a.F,a.S) < mini(b.F,b.S))
return a;
return b;
}
int main(){
int n;
cin>>n;
vector<vector<pii > > v;
vector<vector<int> > path;
int i,j;
for(i=0;i<n;i++){
vector<pii > x;
vector<int> q(n,0);
for(j=0;j<n;j++){
int y;cin>>y;
x.push_back(MP(calc2(y),calc5(y))); //I store factors of 2,5 in the vector to calculate
}
x.push_back(MP(100000,100000)); //padding each row to n+1 elements (to handle overflow in code)
v.push_back(x);
path.push_back(q); //initialize path matrix to 0
}
vector<pii > x(n+1,MP(100000,100000));
v.push_back(x); //pad 1 more row to handle index overflow
for(i=n-1;i>=0;i--){
for(j=n-1;j>=0;j--){ //move from destination to source grid
if(i==n-1 && j==n-1)
continue;
//here, the LHS of condition in if block is the condition which determines minimum number of trailing 0's. This is the same condition that is used to manipulate "v" for getting the same result.
if(min(MP(v[i][j].F+v[i+1][j].F,v[i][j].S+v[i+1][j].S), MP(v[i][j].F+v[i][j+1].F,v[i][j].S+v[i][j+1].S)) == MP(v[i][j].F+v[i+1][j].F,v[i][j].S+v[i+1][j].S))
path[i][j] = 1; //go down
else
path[i][j] = 2; //go right
v[i][j] = min(MP(v[i][j].F+v[i+1][j].F,v[i][j].S+v[i+1][j].S), MP(v[i][j].F+v[i][j+1].F,v[i][j].S+v[i][j+1].S));
}
}
cout<<mini(v[0][0].F, v[0][0].S)<<endl; //print result
for(i=0,j=0;i<=n-1 && j<=n-1;){ //print path (I don't know o/p format)
cout<<"("<<i<<","<<j<<") -> ";
if(path[i][j]==1)
i++;
else
j++;
}
return 0;
}
This code gives fine results as far as the test cases I checked. If you have any doubts regarding this code, ask in comments.
EDIT:
The basic thought process.
To reach the destination, there are only 2 options. I started with destination to avoid the problem of path ahead calculation, because if 2 have same minimum values, then we chose any one of them. If the path to destination is already calculated, it does not matter which we take.
And minimum is to check which pair is more suitable. If a pair has minimum 2's or 5's than other, it will produce less 0's.
Here is a solution proposal using Javascript and functional programming.
It relies on several functions:
the core function is smallest_trailer that recursively goes through the grid. I have chosen to go in 4 possible direction, left "L", right "R", down "D" and "U". It is not possible to pass twice on the same cell. The direction that is chosen is the one with the smallest number of trailing zeros. The counting of trailing zeros is devoted to another function.
the function zero_trailer(p,n,nbz) assumes that you arrive on a cell with a value p while you already have an accumulator n and met nbz zeros on your way. The function returns an array with two elements, the new number of zeros and the new accumulator. The accumulator will be a power of 2 or 5. The function uses the auxiliary function pow_2_5(n) that returns the powers of 2 and 5 inside n.
Other functions are more anecdotical: deepCopy(arr) makes a standard deep copy of the array arr, out_bound(i,j,n) returns true if the cell (i,j) is out of bound of the grid of size n, myMinIndex(arr) returns the min index of an array of 2 dimensional arrays (each subarray contains the nb of trailing zeros and the path as a string). The min is only taken on the first element of subarrays.
MAX_SAFE_INTEGER is a (large) constant for the maximal number of trailing zeros when the path is wrong (goes out of bound for example).
Here is the code, which works on the example given in the comments above and in the orginal link.
var MAX_SAFE_INTEGER = 9007199254740991;
function pow_2_5(n) {
// returns the power of 2 and 5 inside n
function pow_not_2_5(k) {
if (k%2===0) {
return pow_not_2_5(k/2);
}
else if (k%5===0) {
return pow_not_2_5(k/5);
}
else {
return k;
}
}
return n/pow_not_2_5(n);
}
function zero_trailer(p,n,nbz) {
// takes an input two numbers p and n that should be multiplied and a given initial number of zeros (nbz = nb of zeros)
// n is the accumulator of previous multiplications (a power of 5 or 2)
// returns an array [kbz, k] where kbz is the total new number of zeros (nbz + the trailing zeros from the multiplication of p and n)
// and k is the new accumulator (typically a power of 5 or 2)
function zero_aux(k,kbz) {
if (k===0) {
return [1,0];
}
else if (k%10===0) {
return zero_aux(k/10,kbz+1);
}
else {
return [kbz,k];
}
}
return zero_aux(pow_2_5(p)*n,nbz);
}
function out_bound(i,j,n) {
return !((i>=0)&&(i<n)&&(j>=0)&&(j<n));
}
function deepCopy(arr){
var toR = new Array(arr.length);
for(var i=0;i<arr.length;i++){
var toRi = new Array(arr[i].length);
for(var j=0;j<arr[i].length;j++){
toRi[j] = arr[i][j];
}
toR[i] = toRi;
}
return toR;
}
function myMinIndex(arr) {
var min = arr[0][0];
var minIndex = 0;
for (var i = 1; i < arr.length; i++) {
if (arr[i][0] < min) {
minIndex = i;
min = arr[i][0];
}
}
return minIndex;
}
function smallest_trailer(grid) {
var n = grid.length;
function st_aux(i,j,grid_aux, acc_mult, nb_z, path) {
if ((i===n-1)&&(j===n-1)) {
var tmp_acc_nbz_f = zero_trailer(grid_aux[i][j],acc_mult,nb_z);
return [tmp_acc_nbz_f[0], path];
}
else if (out_bound(i,j,n)) {
return [MAX_SAFE_INTEGER,[]];
}
else if (grid_aux[i][j]<0) {
return [MAX_SAFE_INTEGER,[]];
}
else {
var tmp_acc_nbz = zero_trailer(grid_aux[i][j],acc_mult,nb_z) ;
grid_aux[i][j]=-1;
var res = [st_aux(i+1,j,deepCopy(grid_aux), tmp_acc_nbz[1], tmp_acc_nbz[0], path+"D"),
st_aux(i-1,j,deepCopy(grid_aux), tmp_acc_nbz[1], tmp_acc_nbz[0], path+"U"),
st_aux(i,j+1,deepCopy(grid_aux), tmp_acc_nbz[1], tmp_acc_nbz[0], path+"R"),
st_aux(i,j-1,deepCopy(grid_aux), tmp_acc_nbz[1], tmp_acc_nbz[0], path+"L")];
return res[myMinIndex(res)];
}
}
return st_aux(0,0,grid, 1, 0, "");
}
myGrid = [[1, 25, 100],[2, 1, 25],[100, 5, 1]];
console.log(smallest_trailer(myGrid)); //[0,"RDDR"]
myGrid = [[1, 2, 100],[25, 1, 5],[100, 25, 1]];
console.log(smallest_trailer(myGrid)); //[0,"DRDR"]
myGrid = [[1, 10, 1, 1, 1],[1, 1, 1, 10, 1],[10, 10, 10, 10, 1],[10, 10, 10, 10, 1],[10, 10, 10, 10, 1]];
console.log(smallest_trailer(myGrid)); //[0,"DRRURRDDDD"]
This is my Dynamic Programming solution.
https://app.codility.com/demo/results/trainingAXFQ5B-SZQ/
For better understanding we can simplify the task and assume that there are no zeros in the matrix (i.e. matrix contains only positive integers), then the Java solution will be the following:
class Solution {
public int solution(int[][] a) {
int minPws[][] = new int[a.length][a[0].length];
int minPws2 = getMinPws(a, minPws, 2);
int minPws5 = getMinPws(a, minPws, 5);
return min(minPws2, minPws5);
}
private int getMinPws(int[][] a, int[][] minPws, int p) {
minPws[0][0] = pws(a[0][0], p);
//Fullfill the first row
for (int j = 1; j < a[0].length; j++) {
minPws[0][j] = minPws[0][j-1] + pws(a[0][j], p);
}
//Fullfill the first column
for (int i = 1; i < a.length; i++) {
minPws[i][0] = minPws[i-1][0] + pws(a[i][0], p);
}
//Fullfill the rest of matrix
for (int i = 1; i < a.length; i++) {
for (int j = 1; j < a[0].length; j++) {
minPws[i][j] = min(minPws[i-1][j], minPws[i][j-1]) + pws(a[i][j], p);
}
}
return minPws[a.length-1][a[0].length-1];
}
private int pws(int n, int p) {
//Only when n > 0
int pws = 0;
while (n % p == 0) {
pws++;
n /= p;
}
return pws;
}
private int min(int a, int b) {
return (a < b) ? a : b;
}
}

Implement algorithm to merge sorted arrays and return it

I have to implement a Java program called Merge.java which contain the following implementation of algorithm:
Using the merge procedure for merge sort, merge the first two sorted arrays, then merge in the third,and so on. Given k sorted arrays, each with n elements, which combine them into a single sorted array of kn elements.
Program should generate a 2-dimensional array data with dimension k × n storing k sorted arrays of randomly generated integers of length n. Each algorithm should take data as input and merge all k lists into one single array result of length k × n.
public class Merge {
int k = 2; int n = 4;
//generate a 2-dimensional array data with dimension k × n
int[][] data = new int[k][n];
int size = k*n;
//implementing merge procedure for merge sort
public static int[] merge(int data[][]){
// First, creating a new array to store the single sorted array
int res[] = new int[12];
How can I then traverse through the arrays and compare their elements one by one and insert them in the new array (res) in sorted order and is this the right way as per question?
return res ;
}
public static void printArray(int[] arr){
for(int i : arr) {
System.out.printf("%d ", i);
}
System.out.printf("n");
}
public static void main(String[]args){
Merge obj = new Merge();
int[][] array = new int[][]{{12, 8, 1, 5},{ 10, 3, 4, 23}};
int [] finalSorted = merge(array);
printArray(finalSorted);
}
}
Edited to add:
Was both helpful..cheers.. this is what I got so far:
However my program should return this in 2-Dimension and arrays can be more than two:
Program should generate a 2-dimensional array data with dimension k × n storing k sorted arrays of randomly generated integers of length n. Each algorithm should take data as input and merge all k lists into one single array result of length k × n.
What would be next step?
//merge method take takes two arrays as parameters and returns the merge array
public int[] merge(int[] array1 , int [] array2){
int i=0,j=0,k = 0;
int m=array1.length;
int n=array2.length ;
// declaring a to be returned array after merging those two array1 & array2
int[] mergedArray = new int[m+n];
//comparing between two arrays , write it and compare next element and so on
while(i< m && j<n){
if(array1[i]<= array2[j]){
// if first element of array1 is <= then array2 then place array1 element in the mergedArray and viceversa
mergedArray[k] = array1[i];
i++;
}else{
mergedArray[j]=array2[j]; // opposite of above
j++;
}
k++ ;
}
// when run out of elements from one or other array, just write all the elements from the other
if(i<m){
for(int p=i ; p<m ; p++){
mergedArray[k] = array1[p];
k++;
}
} else {
for(int p=j ; p<n ; p++){
mergedArray[k]=array2[p];
k++;
}
}
return mergedArray;
}
}
try this..
// size of C array must be equal or greater than
// sum of A and B arrays' sizes
public void merge(int[] A, int[] B, int[] C) {
int i, j, k, m, n;
i = 0;
j = 0;
k = 0;
m = A.length;
n = B.length;
while (i < m && j < n) {
if (A[i] <= B[j]) {
C[k] = A[i];
i++;
} else {
C[k] = B[j];
j++;
}
k++;
}
if (i < m) {
for (int p = i; p < m; p++) {
C[k] = A[p];
k++;
}
} else {
for (int p = j; p < n; p++) {
C[k] = B[p];
k++;
}
}
}
Refrance Link : http://www.algolist.net/Algorithms/Merge/Sorted_arrays
Rather than just post the answer, let me give you some pointers in the right direction.
First, you'll need a merge() method that takes two arrays as parameters and returns the merged array. That means that the returned array should be declared and allocated inside the merge() method itself.
Then it's just a matter of looking at the two arrays, element by element. If the current element from a is less than the current element of b, write it and get the next element from a. If the current element from b is less than the current element from a, write it and get the next element from b. And when you run out of elements from one or the other array, just write all the elements from the other.
You'll invoke this method with the first two arrays that you generated. Then, you'll invoke it with the result of the first merge and one of the remaining generated arrays. Keep doing that until you have merged in all of the generated arrays, one at a time.
Then you're done.

SUM exactly using K elements solution

Problem: On a given array with N numbers, find subset of size M (exactly M elements) that equal to SUM.
I am looking for a Dynamic Programming(DP) solution for this problem. Basically looking to understand the matrix filled approach. I wrote below program but didn't add memoization as i am still wondering how to do that.
#include <stdio.h>
#define SIZE(a) sizeof(a)/sizeof(a[0])
int binary[100];
int a[] = {1, 2, 5, 5, 100};
void show(int* p, int size) {
int j;
for (j = 0; j < size; j++)
if (p[j])
printf("%d\n", a[j]);
}
void subset_sum(int target, int i, int sum, int *a, int size, int K) {
if (sum == target && !K) {
show(binary, size);
} else if (sum < target && i < size) {
binary[i] = 1;
foo(target, i + 1, sum + a[i], a, size, K-1);
binary[i] = 0;
foo(target, i + 1, sum, a, size, K);
}
}
int main() {
int target = 10;
int K = 2;
subset_sum(target, 0, 0, a, SIZE(a), K);
}
Is the below recurrence solution makes sense?
Let DP[SUM][j][k] sum up to SUM with exactly K elements picked from 0 to j elements.
DP[i][j][k] = DP[i][j-1][k] || DP[i-a[j]][j-1][k-1] { input array a[0....j] }
Base cases are:
DP[0][0][0] = DP[0][j][0] = DP[0][0][k] = 1
DP[i][0][0] = DP[i][j][0] = 0
It means we can either consider this element ( DP[i-a[j]][j-1][k-1] ) or we don't consider the current element (DP[i][j-1][k]). If we consider current element, k is reduced by 1 which reduces the elements that needs to be considered and same goes when current element is not considered i.e. K is not reduced by 1.
Your solution looks right to me.
Right now, you're basically backtracking over all possibilities and printing each solution. If you only want one solution, you could add a flag that you set when one solution was found and check before continuing with recursive calls.
For memoization, you should first get rid of the binary array, after which you can do something like this:
int memo[NUM_ELEMENTS][MAX_SUM][MAX_K];
bool subset_sum(int target, int i, int sum, int *a, int size, int K) {
if (sum == target && !K) {
memo[i][sum][K] = true;
return memo[i][sum][K];
} else if (sum < target && i < size) {
if (memo[i][sum][K] != -1)
return memo[i][sum][K];
memo[i][sum][K] = foo(target, i + 1, sum + a[i], a, size, K-1) ||
foo(target, i + 1, sum, a, size, K);
return memo[i][sum][K]
}
return false;
}
Then, look at memo[_all indexes_][target][K]. If this is true, there exists at least one solution. You can store addition information to get you that next solution, or you can iterate with an i from found_index - 1 to 0 and check for which i you have memo[i][sum - a[i]][K - 1] == true. Then recurse on that, and so on. This will allow you to reconstruct the solution using just the memo array.
To my understanding, if only the feasibility of the input has to be checked, the problem can be solved with a two-dimensional state space
bool[][] IsFeasible = new bool[n][k]
where IsFeasible[i][j] is true if and only if there is a subset of the elements 1 to i which sum up to exactly j for every
1 <= i <= n
1 <= j <= k
and for this state space, the recurrence relation
IsFeasible[i][j] = IsFeasible[i-1][k-a[i]] || IsFeasible[i-1][k]
can be used, where the left-hand side of the or-operator || corresponds to selecting the i-th item and the right-hand side corresponds to to not selecting the i-th item. The actual choice of items could be obtained by backtracking or auxiliary information saved during evaluation.

Find the number of possible combinations of three permuted lists

I'm looking for a solution for this task:
There are three permuted integer lists:
index
0 1 2 3
[2,4,3,1]
[3,4,1,2]
[1,2,4,3]
I'd like to know how many combinations of three tuples across the lists there are. For example, after rotating the second list by one to the right and the third list by one to the left:
0 1 2 3
[2,4,3,1]
3 0 1 2
[2,3,4,1]
1 2 3 0
[2,4,3,1]
would result in two combinations (2,2,2) and (1,1,1). I'm only interested in the number of combinations, not the actual combinations themselves.
The lists have always the same length N. From my understanding, there are is at least one combination and maximally N.
I've written an imperative solution, using three nested for loops, but for larger problems sizes (e.g. N > 1000) this quickly becomes unbearable.
Is there are more efficient approach than brute force (trying all combinations)?. Maybe some clever algorithm or a mathematical trick?
Edit:
I'm rephrasing the question to make it (hopefully) more clear:
I have 3 permutations of a list [1..N].
The lists can be individually rotated left or right, until the elements for some indexes line up. In the above example that would be:
Right rotate list 2 by 1
Left rotate list 3 by 1
Now the columns are aligned for 2 and 1.
I've also added the indexes the example above. Please tell me, if it's still unclear.
My code so far:
#include <iostream>
int
solve(int n, int * a, int * b, int * c)
{
int max = 0;
for (int i = 0; i < n; ++i) {
int m = 0;
for (int j = 0; j < n; ++j) {
if (a[i] == b[j]) {
for (int k = 0; k < n; ++k) {
if (a[i] == c[k]) {
for (int l = 0; l < n; ++l) {
if (a[l] == b[(l+j) % n] && a[l] == b[(l+k) % n]) {
++m;
}
}
}
}
}
}
if (m > max) {
max = m;
}
}
return max;
}
int
main(int argc, char ** argv)
{
int n = 5;
int a[] = { 1, 5, 4, 3, 2 };
int b[] = { 1, 3, 2, 4, 5 };
int c[] = { 2, 1, 5, 4, 3 };
std::cout << solve(n, a, b, c) << std::endl;
return 0;
}
Here is an efficient solution:
Let's assume that we have picked a fixed element from the first list and we want to match it to the elements from the second and the third list with the same value. It uniquely determines the rotation of the second and the third list(we can assume that the first list is never rotated). It gives us a pair of two integers: (the position of this element in the first list minus its position in the second list modulo N, the same thing for the first and the third list).
Now we can iterate over all elements of the first list and generate these pairs.
The answer is the number of ocurrences of the most frequent pair.
The time complexity is O(N * log N) if we use standard sort to find the most frequent pair or O(N) if we use radix sort or a hash table.
You can make it by creating all combinations like:
0,0,0
0,0,1
0,1,0
0,1,1
1,0,0
1,0,1
1,1,0
1,1,1
Each 0 / 1 can be your array
This code can help you creating this list above:
private static ArrayList<String> getBinaryArray(ArrayList<Integer> array){
//calculating the possible combinations we can get
int possibleCombinations = (int) Math.pow(2, array.size());
//creating an array with all the possible combinations in binary
String binary = "";
ArrayList<String> binaryArray = new ArrayList<String>();
for (int k = 0; k <possibleCombinations; k++) {
binary = Integer.toBinaryString(k);
//adding '0' as much as we need
int len = (array.size() - binary.length());
for (int w = 1; w<=len; w++) {
binary = "0" + binary;
}
binaryArray.add(binary);
}
return binaryArray;
}
it's also either can be with 0/1/2 numbers which each other number can be the lists you got.
if it's not so clear please tell me

Resources