I'm interested in aggregating my data into buckets, but I want to put two distinct values to the same bucket.
This is what I mean:
Say I have this query:
GET _search
{
"size": 0,
"aggs": {
"my-agg-name": {
"terms": {
"field": "ecs.version"
}
}
}
}
it returns this response:
"aggregations" : {
"my-agg-name" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "1.12.0",
"doc_count" : 642826144
},
{
"key" : "8.0.0",
"doc_count" : 204064845
},
{
"key" : "1.1.0",
"doc_count" : 16508253
},
{
"key" : "1.0.0",
"doc_count" : 9162928
},
{
"key" : "1.6.0",
"doc_count" : 1111542
},
{
"key" : "1.5.0",
"doc_count" : 10445
}
]
}
}
every distinct value of the field ecs.version is in it's own bucket.
But say I wanted to define my buckets such that:
bucket1: [1.12.0, 8.0.0]
bucket2: [1.6.0, 8.4.0]
bucket3: [1.0.0, 8.8.0]
Is this possible in anyway?
I know I can just return all the buckets and do the sum programmatically, but this list can be very long, I don't think it would be efficient. Am I wrong?
You can use Runtime Mapping to generat runtime field and that field will be use for aggregation. I have done below exmaple on ES 7.16.
I have index some of the sample document and below is aggregation output without join on multipul values:
"aggregations" : {
"version" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "1.12.0",
"doc_count" : 3
},
{
"key" : "1.6.0",
"doc_count" : 3
},
{
"key" : "8.4.0",
"doc_count" : 3
},
{
"key" : "8.0.0",
"doc_count" : 2
}
]
}
}
You can use below query with runtime mapping but you need to add multipul if condition for your version mappings:
{
"size": 0,
"runtime_mappings": {
"normalized_version": {
"type": "keyword",
"script": """
String version = doc['version.keyword'].value;
if (version.equals('1.12.0') || version.equals('8.0.0')) {
emit('1.12.0, 8.0.0');
} else if (version.equals('1.6.0') || version.equals('8.4.0')){
emit('1.6.0, 8.4.0');
}else {
emit(version);
}
"""
}
},
"aggs": {
"genres": {
"terms": {
"field": "normalized_version"
}
}
}
}
Below is output of above aggregation query:
"aggregations" : {
"genres" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "1.6.0, 8.4.0",
"doc_count" : 6
},
{
"key" : "1.12.0, 8.0.0",
"doc_count" : 5
}
]
}
}
Related
I got a confusion that how to specify the number of returned docs from cumulative_sum aggs, this is my search:
{
"query": {"match_all": {}},
"size": 0,
"aggs": {
"group_by_date": {
"date_histogram": {
"field": "timestamp",
"interval": "day"
},
"aggs": {
"cumulative_docs": {
"cumulative_sum": {"buckets_path": "_count"}
}
}
}
}
}
and it returns max number of buckets
"aggregations" : {
"group_by_date" : {
"buckets" : [
{
"key_as_string" : "2022-09-03T00:00:00.000Z",
"key" : 1662163200000,
"doc_count" : 19,
"cumulative_docs" : {
"value" : 19.0
}
},
{
"key_as_string" : "2022-09-04T00:00:00.000Z",
"key" : 1662249600000,
"doc_count" : 0,
"cumulative_docs" : {
"value" : 19.0
}
},
{
"key_as_string" : "2022-09-05T00:00:00.000Z",
"key" : 1662336000000,
"doc_count" : 0,
"cumulative_docs" : {
"value" : 19.0
}
},
{
"key_as_string" : "2022-09-06T00:00:00.000Z",
"key" : 1662422400000,
"doc_count" : 0,
"cumulative_docs" : {
"value" : 19.0
}
},
{
"key_as_string" : "2022-09-07T00:00:00.000Z",
"key" : 1662508800000,
"doc_count" : 0,
"cumulative_docs" : {
"value" : 19.0
}
},
{
"key_as_string" : "2022-09-08T00:00:00.000Z",
"key" : 1662595200000,
"doc_count" : 0,
"cumulative_docs" : {
"value" : 19.0
}
},
...
I tried to use bucket_selector to filter top10 or N in cumulative_sum but its return error such like can not support sub aggs in cumulative_sum, and also tried to use size param but not support.
if I wanna return only ten or more(I can specify it myself), how can I revise my code here?
Please can someone help with the below Question.
https://discuss.elastic.co/t/nested-aggregation-with-and-always-return-0-match/315722?u=chattes
I have used following aggregations
1. Terms aggregation
2. Bucket selector
3. Nested aggregation
First I have grouped by user id using terms aggregation. Then further grouped by skill Id. Using bucket selector I have filtered users which have documents under two skills.
Query
GET index5/_search
{
"size": 0,
"aggs": {
"users": {
"terms": {
"field": "id",
"size": 10
},
"aggs": {
"skills": {
"nested": {
"path": "skills"
},
"aggs": {
"filter_skill": {
"terms": {
"field": "skills.id",
"size": 10,
"include": [
553,
426
]
}
}
}
},
"bucket_count": {
"bucket_selector": {
"buckets_path": {
"skill_count": "skills>filter_skill._bucket_count"
},
"script": "params.skill_count ==2"
}
}
}
}
}
}
Results
"aggregations" : {
"users" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 1,
"doc_count" : 1,
"skills" : {
"doc_count" : 3,
"filter_skill" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "426",
"doc_count" : 1
},
{
"key" : "553",
"doc_count" : 1
}
]
}
}
},
{
"key" : 2,
"doc_count" : 1,
"skills" : {
"doc_count" : 2,
"filter_skill" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "426",
"doc_count" : 1
},
{
"key" : "553",
"doc_count" : 1
}
]
}
}
}
]
}
I have an index products which has an internal object attributes which looks like:
{
properties: {
id: {...},
name: {...},
colors: {...},
// remaining fields
}
}
I'm trying to produce a search query with this form and I need to figure out how to write the aggs object.
{ query: {...}, aggs: {...} }
I can write this out manually for two fields to get the desired result, however the object contains 50+ fields so I need it to be able to handle it automatically
"aggs": {
"attributes.color_group.id": {
"terms": {
"field": "attributes.color_group.id.keyword"
}
},
"attributes.product_type.id": {
"terms": {
"field": "attributes.product_type.id.keyword"
}
}
}
Gives me the result:
"aggregations" : {
"attributes.product_type.id" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 34,
"buckets" : [
{
"key" : "374",
"doc_count" : 203
},
{
"key" : "439",
"doc_count" : 79
},
{
"key" : "460",
"doc_count" : 28
},
{
"key" : "451",
"doc_count" : 24
},
{
"key" : "558",
"doc_count" : 18
},
{
"key" : "500",
"doc_count" : 10
},
{
"key" : "1559",
"doc_count" : 9
},
{
"key" : "1560",
"doc_count" : 9
},
{
"key" : "455",
"doc_count" : 7
},
{
"key" : "501",
"doc_count" : 6
}
]
},
"attributes.color_group.id" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 35,
"buckets" : [
{
"key" : "12",
"doc_count" : 98
},
{
"key" : "54",
"doc_count" : 48
},
{
"key" : "118",
"doc_count" : 43
},
{
"key" : "110",
"doc_count" : 41
},
{
"key" : "111",
"doc_count" : 35
},
{
"key" : "71",
"doc_count" : 35
},
{
"key" : "119",
"doc_count" : 24
},
{
"key" : "62",
"doc_count" : 21
},
{
"key" : "115",
"doc_count" : 20
},
{
"key" : "113",
"doc_count" : 15
}
]
}
}
Which is exactly what I want. After some research I found that you can use query_string which would allow me to find everything starting with attributes., however it does not seem to work inside aggregations.
As I know what you are asking is not possible with inbuild functionality of elasticsearch. But there are some work around you can do like:
Use Search Template:
Below is Example for Search Template, where you will provide list of field as array and it will create the aggregation for all provided fields. you can store search template using Script API and use id of search template while calling search request.
POST dyagg/_search/template
{
"source": """{
"query": {
"match_all": {}
},
"aggs": {
{{#filter}}
"{{.}}": {
"terms": {
"field": "{{.}}",
"size": 10
}
}, {{/filter}}
"name": {
"terms": {
"field": "name",
"size": 10
}
}
}
}""",
"params": {
"filter":["lastname","firstname","city","country"]
}
}
Response:
"aggregations" : {
"country" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "India",
"doc_count" : 4
}
]
},
"firstname" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "Rajan",
"doc_count" : 1
},
{
"key" : "Sagar",
"doc_count" : 1
},
{
"key" : "Sajan",
"doc_count" : 1
},
{
"key" : "Sunny",
"doc_count" : 1
}
]
},
"city" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "Mumbai",
"doc_count" : 2
},
{
"key" : "Pune",
"doc_count" : 2
}
]
},
"name" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "Rajan Desai",
"doc_count" : 1
},
{
"key" : "Sagar Patel",
"doc_count" : 1
},
{
"key" : "Sajan Patel",
"doc_count" : 1
},
{
"key" : "Sunny Desai",
"doc_count" : 1
}
]
},
"lastname" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "Desai",
"doc_count" : 2
},
{
"key" : "Patel",
"doc_count" : 2
}
]
}
}
Second way is using programming. Please check this stackoverflow answer where they have mentioned about how to do in PHP so same you can follow for other language.
NOTE:
If you noticed search template, I have added one static aggregation for name field and reason for adding is to avoid extra comma in the end of for loop complete. If you not add then you will get json_parse_exception.
I have created an index and indexed the document in elasticsearch it's working fine but here the challenge is i have to get an aggregate count of category field based on uniqueid i have given my sample documents below.
{
"UserID":"A1001",
"Category":"initiated",
"policyno":"5221"
},
{
"UserID":"A1001",
"Category":"pending",
"policyno":"5222"
},
{
"UserID":"A1001",
"Category":"pending",
"policyno":"5223"
},
{
"UserID":"A1002",
"Category":"completed",
"policyno":"5224"
}
**Sample output for UserID - "A1001"**
initiated-1
pending-2
**Sample output for UserID - "A1002"**
completed-1
How to get the aggregate count from above given Json documents like the sample output mentioned above
I suggest a terms aggregation as shown in the following:
{
"size": 0,
"aggs": {
"By_ID": {
"terms": {
"field": "UserID.keyword"
},
"aggs": {
"By_Category": {
"terms": {
"field": "Category.keyword"
}
}
}
}
}
}
Here is a snippet of the response:
"hits" : {
"total" : {
"value" : 4,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"By_ID" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "A1001",
"doc_count" : 3,
"By_Category" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "pending",
"doc_count" : 2
},
{
"key" : "initiated",
"doc_count" : 1
}
]
}
},
{
"key" : "A1002",
"doc_count" : 1,
"By_Category" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "completed",
"doc_count" : 1
}
]
}
}
]
}
}
I am quite new to elasticsearch, I am trying to sort on a subaggregations. that is my results should be sorted based on the sub aggregations first. I have tried lot of things to enable this sort but it isn't working. Can anyone help with this?
{
"aggs": {
"distinct_part": {
"terms": {
"field": "part",
"size": 1000
}
},
"aggs": {
"distinct_manufacturer": {
"terms": {
"field": "manufacturer",
"size": 1000
}
}
}
}
I am trying to sort on the manufacturer, my entire result should be sorted on that? Can someone point me on how I can achieve that?
I tried to do a test locally with your query. I did a small correction if I understood your issue well. I ingested the following data in the index "subsorting":
"part": "car",
"manufacturer": "brandA"
"part": "car",
"manufacturer": "brandB"
"part": "car",
"manufacturer": "brandC"
"part": "motor",
"manufacturer": "brandA"
"part": "motor",
"manufacturer": "brandB"
"part": "motor",
"manufacturer": "brandC"
Note: Both part and manufacturer are mapped as text.
GET subsorting/_search
{
"size": 0,
"aggs": {
"distinct_part": {
"terms": {
"field": "part.keyword",
"size": 1000
},
"aggs": {
"distinct_manufacturer": {
"terms": {
"field": "manufacturer.keyword",
"order": {
"_key": "asc"
},
"size": 1000
}
}
}
}
}
}
If both fields "part" and "manufacturer" are mapped as keywords, remove the ".keywords" from the query.
The response from the above query is as follows if sorted as ascending order:
"aggregations" : {
"distinct_part" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "motor",
"doc_count" : 4,
"distinct_manufacturer" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "brandA",
"doc_count" : 2
},
{
"key" : "brandB",
"doc_count" : 1
},
{
"key" : "brandC",
"doc_count" : 1
}
]
}
},
{
"key" : "car",
"doc_count" : 3,
"distinct_manufacturer" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "brandA",
"doc_count" : 1
},
{
"key" : "brandB",
"doc_count" : 1
},
{
"key" : "brandC",
"doc_count" : 1
}
]
}
}
]
}
}
If you need the result as descending order, here is the response where "_key": "desc":
"aggregations" : {
"distinct_part" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "motor",
"doc_count" : 4,
"distinct_manufacturer" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "brandC",
"doc_count" : 1
},
{
"key" : "brandB",
"doc_count" : 1
},
{
"key" : "brandA",
"doc_count" : 2
}
]
}
},
{
"key" : "car",
"doc_count" : 3,
"distinct_manufacturer" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "brandC",
"doc_count" : 1
},
{
"key" : "brandB",
"doc_count" : 1
},
{
"key" : "brandA",
"doc_count" : 1
}
]
}
}
]
}
}
Links:
https://www.elastic.co/guide/en/elasticsearch/reference/7.9/search-aggregations-bucket-terms-aggregation.html