Cypress - how to describe a multiple step test - cypress

This is probably an anti-pattern, but I'm new to e2e testing and I'm not sure there's a way around my requirements.
I have the need to test a scenario in my system that is several steps long (maybe 50-60 steps). This means going to about 15-20 pages, clicking and entering various details, and seeing the results. The reason the requirement is so long is that the system processes orders from creating an order, creating line items with various details, and running it through a long production process. My most valuable test would be to run through the whole process and verify the results.
I can't find a good way of isolating, say, steps 40-42 to verify that this process alone works well, because to get an order in that state I'd have to run through the first 39 steps.
Is there a good way to write tests to cover this scenario?

Related

Is there a way to have OptionalStep timeout quickly in QTP?

In my automated test I have an area that occasionally shows up (and needs to be clicked on when it does show up). This is the perfect place to use an OptionalStep prefix, to prevent the step from failing if the optional area never shows up.
Thing is, I would like the OptionalStep to only wait a second or two before moving on to the rest of the test. Just as I can have object.Exist(2) only wait for 2 seconds, is there a way to have OptionalStep wait for only a couple of seconds?
Some other caveats:
I'd like to keep this as one small line. I know I could create a
multi-line logic test that uses object.Exist(2) inside an If/Then
statement, but I'd rather have the code be small and trim.
I don't want to change the global 20 second timeout just for this one
step.
Since this optional step only shows up in one specific area, it seems
like Recovery Scenarios would not be a good choice to have running
throughout the entire test.
Vitaly's comment would be a good solution as you are possibly unnecessarily over complicating your test.
Also having such a long global timeout is not recommended and should be as low as possible. I usually have it set at around 3 seconds and deal with the synchronisation in the code.
Anything that takes a long period of time should be known about upfront and dealt with in the code. Having a global timeout for everything will cause your test to run unnecessarily slow when most object cannot be found errors occur.

Creating Cron Jobs in C#

I am writing a Scheduling type application in C#, and allowing the user to store tasks that they want to run at certain times. Right now I give them the option of specifying how often to run it (Daily/Weekly/Monthly) as well as specify a time, which is then stored in a Database.
I am having a little bit of trouble just wrapping my head around the pseudo code behind this, and am looking for some suggestions about how to implement it. I am running a repeating timer every 60 seconds to check each task to see if it needs to run, but always seem to hit road blocks when I need to work with Date/Time and adding Recurring Day (daily/weekly/etc) has complicated it even more.

How do you reproduce bugs that occur sporadically?

We have a bug in our application that does not occur every time and therefore we don't know its "logic". I don't even get it reproduced in 100 times today.
Disclaimer: This bug exists and I've seen it. It's not a pebkac or something similar.
What are common hints to reproduce this kind of bug?
Analyze the problem in a pair and pair-read the code. Make notes of the problems you KNOW to be true and try to assert which logical preconditions must hold true for this happen. Follow the evidence like a CSI.
Most people instinctively say "add more logging", and this may be a solution. But for a lot of problems this just makes things worse, since logging can change timing-dependencies sufficiently to make the problem more or less frequent. Changing the frequency from 1 in 1000 to 1 in 1,000,000 will not bring you closer to the true source of the problem.
So if your logical reasoning does not solve the problem, it'll probably give you a few specifics you could investigate with logging or assertions in your code.
There is no general good answer to the question, but here is what I have found:
It takes a talent for this kind of thing. Not all developers are best suited for it, even if they are superstars in other areas. So know your team, who has a talent for it, and hope you can give them enough candy to get them excited about helping you out, even if it isn't their area.
Work backwards, and treat it like a scientific investigation. Start with the bug, what you see is wrong. Develop hypotheses about what could cause it (this is the creative/imaginative part, the art that not everyone has the talent for) - and it helps a lot to know how the code works. For each of those hypotheses (preferably sorted by what you think is most likely - again pure gut feel here), develop a test that tries to eliminate it as the cause, and test the hypothesis. Any given failure to meet a prediction doesn't mean the hypothesis is wrong. Test the hypothesis until it is confirmed to be wrong (although as it gets less likely you may want to move on to another hypothesis first, just don't discount this one until you have a definitive failure).
Gather as much data as you can during this process. Extensive logging and whatever else is applicable. Do not discount a hypothesis because you lack the data, rather remedy the lack of data. Quite often the inspiration for the right hypothesis comes from examining the data. Noticing something off in a stack trace, weird issue in a log, something missing that should be there in a database, etc.
Double check every assumption. So many times I have seen an issue not get fixed quickly because some general method call was not further investigated, so the problem was just assumed to be not applicable. "Oh that, that should be simple." (See point 1).
If you run out of hypotheses, that is generally caused by insufficient knowledge of the system (this is true even if you wrote every line of code yourself), and you need to run through and review code and gain additional insight into the system to come up with a new idea.
Of course, none of the above guarantees anything, but that is the approach that I have found gets results consistently.
Add some sort of logging or tracing. For example log the last X actions the user committed before causing the bug (only if you can set a condition to match bug).
It's quite common for programmers not to be able to reiterate a user-experienced crash simply because you have developed a certain workflow and habits in using the application that obviously goes around the bug.
At this frequency of 1/100, I'd say that the first thing to do is to handle exceptions and log anything anywhere or you could be spending another week hunting this bug.
Also make a priority list of potentially sensitive articulations and features in your project. For example :
1 - Multithreading
2 - Wild pointers/ loose arrays
3 - Reliance on input devices
etc.
This will help you segment areas that you can brute-force-until-break-again as suggested by other posters.
Since this is language-agnostic, I'll mention a few axioms of debugging.
Nothing a computer ever does is random. A 'random occurrence' indicates a as-yet-undiscovered pattern. Debugging begins with isolating the pattern. Vary individual elements and assess what makes a change in the behaviour of the bug.
Different user, same computer?
Same user, different computer?
Is the occurrence strongly periodic? Does rebooting change the periodicity?
FYI- I once saw a bug that was experienced by a single person. I literally mean person, not a user account. User A would never see the problem on their system, User B would sit down at that workstation, signed on as User A and could immediately reproduce the bug. There should be no conceivable way for the app to know the difference between the physical body in the chair. However-
The users used the app in different ways. User A habitually used a hotkey to to invoke a action and User B used an on-screen control. The difference in the user behaviour would cascade into a visible error a few actions later.
ANY difference that effects the behaviour of the bug should be investigated, even if it makes no sense.
There's a good chance your application is MTWIDNTBMT (Multi Threaded When It Doesn't Need To Be Multi Threaded), or maybe just multi-threaded (to be polite). A good way to reproduce sporadic errors in multi-threaded applications is to sprinkle code like this around (C#):
Random rnd = new Random();
System.Threading.Thread.Sleep(rnd.Next(2000));
and/or this:
for (int i = 0; i < 4000000000; i++)
{
// tight loop
}
to simulate threads completing their tasks at different times than usual or tying up the processor for long stretches.
I've inherited many buggy, multi-threaded apps over the years, and code like the above examples usually makes the sporadic errors occur much more frequently.
Add verbose logging. It will take multiple -- sometimes dozen(s) -- iterations to add enough logging to understand the scenario.
Now the problem is that if the problem is a race condition, which is likely if it doesn't reproduce reliably, so logging can change timing and the problem will stop happening. In this case do not log to a file, but keep a rotating buffer of the log in memory and only dump it on disk when you detect that the problem has occurred.
Edit: a little more thoughts: if this is a gui application run tests with a qa automation tool which allows you to replay macros. If this is a service-type app, try to come up with at least a guess as to what is happening and then programmatically create 'freak' usage patterns which would exercise the code that you suspect. Create higher than usual loads etc.
What development environment?
For C++, your best bet may be VMWare Workstation record/replay, see:
http://stackframe.blogspot.com/2007/04/workstation-60-and-death-of.html
Other suggestions include inspecting the stack trace, and careful code overview... there is really no silver bullet :)
Try to add code in your app to trace the bug automatically once it happens (or even alert you via mail / SMS)
log whatever you can so when it happens you can catch the right system state.
Another thing- try applying automated testing that can cover more territory than human based testing in a formed manner.. it's a long shot, but a good practice in general.
all the above, plus throw some brute force soft-robot at it that is semi random, and scater a lot of assert/verify (c/c++, probably similar in other langs) through the code
Tons of logging and careful code review are your only options.
These can be especially painful if the app is deployed and you can't adjust the logging. At that point, your only choice is going through the code with a fine-tooth comb and trying to reason about how the program could enter into the bad state (scientific method to the rescue!)
Often these kind of bugs are related to corrupted memory and for that reason they might not appear very often. You should try to run your software with some kind of memory profiler e.g., valgrind, to see if something goes wrong.
Let’s say I’m starting with a production application.
I typically add debug logging around the areas where I think the bug is occurring. I setup the logging statements to give me insight into the state of the application. Then I have the debug log level turned on and ask the user/operator(s) notify me of the time of the next bug occurrence. I then analyze the log to see what hints it gives about the state of the application and if that leads to a better understanding of what could be going wrong.
I repeat step 1 until I have a good idea of where I can start debugging the code in the debugger
Sometimes the number of iterations of the code running is key but other times it maybe the interaction of a component with an outside system (database, specific user machine, operating system, etc.). Take some time to setup a debug environment that matches the production environment as closely as possible. VM technology is a good tool for solving this problem.
Next I proceed via the debugger. This could include creating a test harness of some sort that puts the code/components in the state I’ve observed from the logs. Knowing how to setup conditional break points can save a lot of time, so get familiar with that and other features within your debugger.
Debug, debug , debug. If you’re going nowhere after a few hours, take a break and work on something unrelated for awhile. Come back with a fresh mind and perspective.
If you have gotten nowhere by now, go back to step 1 and make another iteration.
For really difficult problems you may have to resort to installing a debugger on the system where the bug is occurring. That combined with your test harness from step 4 can usually crack the really baffling issues.
Unit Tests. Testing a bug in the app is often horrendous because there is so much noise, so many variable factors. In general the bigger the (hay)stack, the harder it is to pinpoint the issue. Creatively extending your unit test framework to embrace edge cases can save hours or even days of sifting
Having said that there is no silver bullet. I feel your pain.
Add pre and post condition check in methods related to this bug.
You may have a look at Design by contract
Along with a lot of patience, a quiet prayer & cursing you would need:
a good mechanism for logging the user actions
a good mechanism for gathering the data state when the user performs some actions (state in application, database etc.)
Check the server environment (e.g. an anti-virus software running at a particular time etc.) & record the times of the error & see if you can find any trends
some more prayers & cursing...
HTH.
Assuming you're on Windows, and your "bug" is a crash or some sort of corruption in unmanaged code (C/C++), then take a look at Application Verifier from Microsoft. The tool has a number of stops that can be enabled to verify things during runtime. If you have an idea of the scenario where your bug occurs, then try to run through the scenario (or a stress version of the scenario) with AppVerifer running. Make sure to either turn on pageheap in AppVerifier, or consider compiling your code with the /RTCcsu switch (see http://msdn.microsoft.com/en-us/library/8wtf2dfz.aspx for more information).
"Heisenbugs" require great skills to diagnose, and if you want help from people here you have to describe this in much more detail, and patiently listen to various tests and checks, report result here, and iterate this till you solve it (or decide it is too expensive in terms of resources).
You will probably have to tell us your actual situation, language, DB, operative system, workload estimate, time of the day it happened in the past, and a myriad of other things, list tests you did already, how they went, and be ready to do more and share the results.
And this will not guarantee that we collectively can find it, either...
I'd suggest to write down all things that user has been doing. If you have lets say 10 such bug reports You can try to find something that connects them.
Read the stack trace carefully and try to guess what could be happened;
then try to trace\log every line of code that potentially can cause trouble.
Keep your focus on disposing resources; many sneaky sporadical bugs i found were related to close\dispose things :).
For .NET projects You can use Elmah (Error Logging Modules and Handlers) to monitor you application for un-caught exceptions, it's very simple to install and provides a very nice interface to browse unknown errors
http://code.google.com/p/elmah/
This saved me just today in catching a very random error that was occuring during a registration process
Other than that I can only recommend trying to get as much information from your users as possible and having a thorough understanding of the project workflow
They mostly come out at night....
mostly
The team that I work with has enlisted the users in recording their time they spend in our app with CamStudio when we've got a pesky bug to track down. It's easy to install and for them to use, and makes reproducing those nagging bugs much easier, since you can watch what the users are doing. It also has no relationship to the language you're working in, since it's just recording the windows desktop.
However, this route seems to be viable only if you're developing corporate apps and have good relationships with your users.
This varies (as you say), but some of the things that are handy with this can be
immediately going into the debugger when the problem occurs and dumping all the threads (or the equivalent, such as dumping the core immediately or whatever.)
running with logging turned on but otherwise entirely in release/production mode. (This is possible in some random environments like c and rails but not many others.)
do stuff to make the edge conditions on the machine worse... force low memory / high load / more threads / serving more requests
Making sure that you're actually listening to what the users encountering the problem are actually saying. Making sure that they're actually explaining the relevant details. This seems to be the one that breaks people in the field a lot. Trying to reproduce the wrong problem is boring.
Get used to reading assembly that was produced by optimizing compilers. This seems to stop people sometimes, and it isn't applicable to all languages/platforms, but it can help
Be prepared to accept that it is your (the developer's) fault. Don't get into the trap of insisting the code is perfect.
sometimes you need to actually track the problem down on the machine it is happening on.
#p.marino - not enough rep to comment =/
tl;dr - build failures due to time of day
You mentioned time of day and that caught my eye. Had a bug once were someone stayed later at work on night, tried to build and commit before they left and kept getting a failure. They eventually gave up and went home. When they caught in the next morning it built fine, they committed (probably should have been more suspiscious =] ) and the build worked for everyone. A week or two later someone stayed late and had an unexpected build failure. Turns out there was a bug in the code that made any build after 7PM break >.>
We also found a bug in one seldom used corner of the project this january that caused problems marshalling between different schemas because we were not accounting for the different calendars being 0 AND 1 month based. So if no one had messed with that part of the project we wouldn't have possibly found the bug until jan. 2011
These were easier to fix than threading issues, but still interesting I think.
hire some testers!
This has worked for really weird heisenbugs.
(I'd also recommend getting a copy of "Debugging" by Dave Argans, these ideas are partly derived form using his ideas!)
(0) Check the ram of the system using something like Memtest86!
The whole system exhibits the problem, so make a test jig that exercises the whole thing.
Say it's a server side thing with a GUI, you run the whole thing with a GUI test framework doing the necessary input to provoke the problem.
It doesn't fail 100% of the time, so you have to make it fail more often.
Start by cutting the system in half ( binary chop)
worse case, you have to remove sub-systems one at a time.
stub them out if they can't be commented out.
See if it still fails. Does it fail more often ?
Keep proper test records, and only change one variable at a time!
Worst case you use the jig and you test for weeks to get meaningful statistics. This is HARD; but remember, the jig is doing the work.
I've got No threads and only one process, and I don't talk to hardware
If the system has no threads, no communicating processes and contacts no hardware; it's tricky; heisenbugs are generally synchronization, but in the no-thread no processes case it's more likely to be uninitialized data, or data used after being released, either on the heap or the stack. Try to use a checker like valgrind.
For threaded/multi-process problems:
Try running it on a different number of CPU's. If it's running on 1, try on 4! Try forcing a 4-computer system onto 1.
It'll mostly ensure things happen one at a time.
If there are threads or communicating processes this can shake out bugs.
If this is not helping but you suspect it's synchronization or threading, try changing the OS time-slice size.
Make it as fine as your OS vendor allows!
Sometimes this has made race conditions happen almost every time!
Obversely, try going slower on the timeslices.
Then you set the test jig running with debugger(s) attached all over the place and wait for the test jig to stop on a fault.
If all else fails, put the hardware in the freezer and run it there. The timing of everything will be shifted.
Debugging is hard and time consuming especially if you are unable to deterministically reproduce the problem. My advice to you is to find out the steps to reproduce it deterministically (not just sometimes).
There has been a lot of research in the field of failure reproduction in the past years and is still very active. Record&Replay techniques have been (so far) the research direction of most researchers. This is what you need to do:
1) Analyze the source code and determine what are the sources of non-determinism in the application, that is, what are the aspects that may take your application through different execution paths (e.g. user input, OS signals)
2) Log them in the next time you execute the application
3) When your application fails again, you have the steps-to-reproduce the failure in your log.
If your log still does not reproduce the failure, then you are dealing with a concurrency bug. In that case, you should take a look at how your application accesses shared variables. Do not attempt to record the accesses to shared variables, because you would be logging too much data, thereby causing severe slowdowns and large logs. Unfortunately, there is not much I can say that would help you to reproduce concurrency bugs, because research still has a long way to go in this subject. The best I can do is to provide a reference to the most recent advance (so far) in the topic of deterministic replay of concurrency bugs:
http://www.gsd.inesc-id.pt/~nmachado/software/Symbiosis_Tutorial.html
Best regards
Use an enhanced crash reporter. In the Delphi environment, we have EurekaLog and MadExcept. Other tools exist in other environments. Or you can diagnose the core dump. You're looking for the stack trace, which will show you where it's blowing up, how it got there, what's in memory, etc.. It's also useful to have a screenshot of the app, if it's a user-interaction thing. And info about the machine that it crashed on (OS version and patch, what else is running at the time, etc..) Both of the tools that I mentioned can do this.
If it's something that happens with a few users but you can't reproduce it, and they can, go sit with them and watch. If it's not apparent, switch seats - you "drive", and they tell you what to do. You'll uncover the subtle usability issues that way. double-clicks on a single-click button, for example, initiating re-entrancy in the OnClick event. That sort of thing. If the users are remote, use WebEx, Wink, etc., to record them crashing it, so you can analyze the playback.

In test driven development, do you write every possible test first, then the code?

In doing test driven development I have been in the habit of writing the first unit test for a new piece of functionality first, then writing the code for that functionality. If I have additional tests to write to cover all scenarios, I usually write them after the code is written. Is this considered bad form? Should I try and write every conceivable test for a piece of functionality first, before ever writing that code?
In order to do TDD properly, you always write the test first, and then the functionality second.
To add to that, I would take one scenario at a time, don't write 20 tests and then write the code for those 20 tests. Write one test, red/green flag it, then move on to your next test. This makes sure you're also doing one of the core tenets of TDD, which is to do the simplest implementation possible that meets all of your requirements/scenarios.
actually no, I often discover functionality "on-the-go". Let me explain the "no" a bit further:
I usually start out writing a test case for a high level feature, defining its Interface. After that, I usually set this test to ignore and continue writing tests for each of the Interfaces functionality. My cycle goes like:
Integration Test for Story A (high level API)
Write Unit Test for method xyz called in Integration Test
Implement method (red/green/refactor)
Repeat 2+3 till Integration Test passes.
While doing so, I often realize I have forgotten some small functionality in my main test. I then usually take time to look back at my customers requirements. If its a fit, I go back and add a test for it, set to ignored as I first want to finish what I started.
Sometimes I see the chance to do a refactoring. I usually finish an implementation till I reach a commit point and do refactoring then, however sometimes I stash my changes, go back and do the refactoring (including new tests if nescessary) first. This workflow is powererd by Mercurial MQ.
For most people, TDD and incremental/agile development go together. This looks something like:
Write a test for some feature
Write just enough code to make the test pass, refactoring as necessary
Repeat.
If you happen to have a detailed specification ahead of time, you could write all of the tests first, but you'd have to live with having sone tests not passing for a while.
The sooner you write the tests, the better. I usually find writing tests being harder tasks than actually implementing the functionality because you have to be aware of all the possible outcomes. So I tend to write more tests when I'm "in the zone". And when during coding I realize I might have missed a test case I just note that down on the to-do lists.
So in my opinion it's up to your leisure but I would implement tests in multiple batches.
The way I see it, test driven development isn't necessarily tests first development. Your tests drive your development and you are really writing your tests as you develop your application. You start by writing a simple test that fails because you haven't written the functionality yet. Then you write your code to implement that so that the tests pass.
Then you go back to your test, make modifications that will force you to add more functionality or refactor your code to follow better practices or reduce duplicate code, go fix your code to make the test pass...repeat, repeat, repeat.
A couple of videos that demonstrates this is below, although you can probably find a lot more by googling "TDD Video"
http://agilesoftwaredevelopment.com/videos/test-driven-development-basic-tutorial
(oops, only one video, new users can't insert more than one link)
I try to write a test at some level before each bit of functionality. Sometimes, I have to write a little more code to get through the compiler, but I try to minimise that. Writing the test first means that I've thought about what the code is supposed to achieve before writing it.
One technique I find useful is to keep an index card or notepad handy, and make a note of all the cases that I think of along the way. That allows me to focus on the current task without losing track of all the other things I'm supposed to think about. Afterwards, I can work through the list and either complete the extra cases or drop them as not necessary.
You could do that, but you wouldn't be doing TDD. The problem (well, one of them, anyway) with writing all of your tests up front is that in any case where the requirements are non-trivial, your tests will be building in a lot of assumptions about the structure of the code you're test-driving. Big steps lead to missteps.
One of the keys of successful TDD involves taking small steps. Small steps mean fewer changes to back out when something goes wrong. Small steps mean you can more often get your head around the effects of the changes you're making. And because small steps are easier to take with confidence, they have the paradoxical effect of increasing your velocity.
The TDD cycle starts with requirements. Start by choosing a requirement you know how to define through tests immediately, in a few short steps. If you look at a requirement and you're not sure how to test it, or you think, "Yeah, but to do that, I'd need to [insert ill-defined steps] first", then you should either skip to another requirement that you know how to do, or you should break this requirement into smaller requirements that you know how to do.
Once you have that, you work in a short red-green-refactor cycle: Write a test that quantifies some part of the requirement ("red", because it fails, because it has no implementation to test yet), write any code that will pass the test ("green"), then rework the code to remove duplication, magic numbers, and other code smells ("refactor"). During the refactoring phase, you should continue working in small steps, frequently re-running the test to make sure you haven't broken anything. Continue this cycle until you can look your boss/client in the eye and call the requirement met.
Now that you have one simple piece of your system defined, you've opened up the list of requirements available to implement - requirements that are adjacent to or dependent on the one you just implemented can now be tested and implemented in smaller steps building on what you've already done.
So the upshot of all that is: Don't try to do all your tests at once. One (small) thing at a time.
The point of TDD is that you have to observe that test fails when feature is not yet implemented. So you have to write test before code.
When you get into the TDD rhythm you write one test at a time and make it work. Very short red-green-refactor cycles really feel the rhythm. That being said, there is nothing wrong with other approaches (and they may even make more sense for some types of problems) but typically the only thing you need to do about other tests you are thinking of is write them down (or have your pair if you are pair programming write them down) so you don't forget them. You have to do that anyway because you could forget about a test in the middle of writing a different test.
Do just enough tests to test 1 unit of code at a time.. then write the actual code until it passes the test.. rinse, wash, repeat until done.
If you find yourself needing to write many tests for one unit of code ( a method, a function etc) it might be a sign that you are trying to do too much in that unit... which in turn makes the unit dificult to test & to refactor at a later time.

Is it bad practice to run tests on a database instead of on fake repositories?

I know what the advantages are and I use fake data when I am working with more complex systems.
What if I am developing something simple and I can easily set up my environment in a real database and the data being accessed is so small that the access time is not a factor, and I am only running a few tests.
Is it still important to create fake data or can I forget the extra coding and skip right to the real thing?
When I said real database I do not mean a production database, I mean a test database, but using a real live DBMS and the same schema as the real database.
The reasons to use fake data instead of a real DB are:
Speed. If your tests are slow you aren't going to run them. Mocking the DB can make your tests run much faster than they otherwise might.
Control. Your tests need to be the sole source of your test data. When you use fake data, your tests choose which fakes you will be using. So there is no chance that your tests are spoiled because someone left the DB in an unfamiliar state.
Order Independence. We want our tests to be runnable in any order at all. The input of one test should not depend on the output of another. When your tests control the test data, the tests can be independent of each other.
Environment Independence. Your tests should be runnable in any environment. You should be able to run them while on the train, or in a plane, or at home, or at work. They should not depend on external services. When you use fake data, you don't need an external DB.
Now, if you are building a small little application, and by using a real DB (like MySQL) you can achieve the above goals, then by all means use the DB. I do. But make no mistake, as your application grows you will eventually be faced with the need to mock out the DB. That's OK, do it when you need to. YAGNI. Just make sure you DO do it WHEN you need to. If you let it go, you'll pay.
It sort of depends what you want to test. Often you want to test the actual logic in your code not the data in the database, so setting up a complete database just to run your tests is a waste of time.
Also consider the amount of work that goes into maintaining your tests and testdatabase. Testing your code with a database often means your are testing your application as a whole instead of the different parts in isolation. This often result in a lot of work keeping both the database and tests in sync.
And the last problem is that the test should run in isolation so each test should either run on its own version of the database or leave it in exactly the same state as it was before the test ran. This includes the state after a failed test.
Having said that, if you really want to test on your database you can. There are tools that help setting up and tearing down a database, like dbunit.
I've seen people trying to create unit test like this, but almost always it turns out to be much more work then it is actually worth. Most abandoned it halfway during the project, most abandoning ttd completely during the project, thinking the experience transfer to unit testing in general.
So I would recommend keeping tests simple and isolated and encapsulate your code good enough it becomes possible to test your code in isolation.
As far as the Real DB does not get in your way, and you can go faster that way, I would be pragmatic and go for it.
In unit-test, the "test" is more important than the "unit".
I think it depends on whether your queries are fixed inside the repository (the better option, IMO), or whether the repository exposes composable queries; for example - if you have a repository method:
IQueryable<Customer> GetCustomers() {...}
Then your UI could request:
var foo = GetCustomers().Where(x=>SomeUnmappedFunction(x));
bool SomeUnmappedFunction(Customer customer) {
return customer.RegionId == 12345 && customer.Name.StartsWith("foo");
}
This will pass for an object-based fake repo, but will fail for actual db implementations. Of course, you can nullify this by having the repository handle all queries internally (no external composition); for example:
Customer[] GetCustomers(int? regionId, string nameStartsWith, ...) {...}
Because this can't be composed, you can check the DB and the UI independently. With composable queries, you are forced to use integration tests throughout if you want it to be useful.
It rather depends on whether the DB is automatically set up by the test, also whether the database is isolated from other developers.
At the moment it may not be a problem (e.g. only one developer). However (for manual database setup) setting up the database is an extra impediment for running tests, and this is a very bad thing.
If you're just writing a simple one-off application that you absolutely know will not grow, I think a lot of "best practices" just go right out the window.
You don't need to use DI/IOC or have unit tests or mock out your db access if all you're writing is a simple "Contact Us" form. However, where to draw the line between a "simple" app and a "complex" one is difficult.
In other words, use your best judgment as there is no hard-and-set answer to this.
It is ok to do that for the scenario, as long as you don't see them as "unit" tests. Those would be integration tests. You also want to consider if you will be manually testing through the UI again and again, as you might just automated your smoke tests instead. Given that, you might even consider not doing the integration tests at all, and just work at the functional/ui tests level (as they will already be covering the integration).
As others as pointed out, it is hard to draw the line on complex/non complex, and you would usually now when it is too late :(. If you are already used to doing them, I am sure you won't get much overhead. If that were not the case, you could learn from it :)
Assuming that you want to automate this, the most important thing is that you can programmatically generate your initial condition. It sounds like that's the case, and even better you're testing real world data.
However, there are a few drawbacks:
Your real database might not cover certain conditions in your code. If you have fake data, you cause that behavior to happen.
And as you point out, you have a simple application; when it becomes less simple, you'll want to have tests that you can categorize as unit tests and system tests. The unit tests should target a simple piece of functionality, which will be much easier to do with fake data.
One advantage of fake repositories is that your regression / unit testing is consistent since you can expect the same results for the same queries. This makes it easier to build certain unit tests.
There are several disadvantages if your code (if not read-query only) modifies data:
- If you have an error in your code (which is probably why you're testing), you could end up breaking the production database. Even if you didn't break it.
- if the production database changes over time and especially while your code is executing, you may lose track of the test materials that you added and have a hard time later cleaning it out of the database.
- Production queries from other systems accessing the database may treat your test data as real data and this can corrupt results of important business processes somewhere down the road. For example, even if you marked your data with a certain flag or prefix, can you assure that anyone accessing the database will adhere to this schema?
Also, some databases are regulated by privacy laws, so depending on your contract and who owns the main DB, you may or may not be legally allowed to access real data.
If you need to run on a production database, I would recommend running on a copy which you can easily create during of-peak hours.
It's a really simple application, and you can't see it growing, I see no problem running your tests on a real DB. If, however, you think this application will grow, it's important that you account for that in your tests.
Keep everything as simple as you can, and if you require more flexible testing later on, make it so. Plan ahead though, because you don't want to have a huge application in 3 years that relies on old and hacky (for a large application) tests.
The downsides to running tests against your database is lack of speed and the complexity for setting up your database state before running tests.
If you have control over this there is no problem in running the tests directly against the database; it's actually a good approach because it simulates your final product better than running against fake data. The key is to have a pragmatic approach and see best practice as guidelines and not rules.

Resources