I am finding it very hard to find documentation on how the DTAB resolvers actually work.
From the Finagle documentation:
A path starting with $ are called “system paths” and are treated specially by Finagle. This is used to specify a concrete Namer.
Apparently, "inet" is one of those "Namers", but I would like to know the complete list of predefined Namers, and also if there are ways to definde new Namers (if I want to implement an in-house Service Discovery mechanism, for example).
The documentations seems very scarce.
Any suggestion?
Related
As I know, it's basing on Guru for vim-go to find the implementations or usage which needs to compile the whole project as a premise. Otherwise, GoLand doesn't need to do that, but how?
While this task may look rather trivial, GoLand uses some tricks to perform it more efficiently. Let's go step by step to explore how it works.
When one opens a project for the first time, the IDE performs so-called indexing. In particular, it stores all the method and method spec names as well as the number of their parameters.
At the beginning of the search, GoLand takes method specs of the interface and finds one with the biggest number of parameters. This is a performance optimization. The idea behind it is that methods with many parameters occur less often in the code, so the IDE needs to check just a few of them.
It's time to use the index. For the chosen method spec, the IDE finds all corresponding methods. The scope is taken into account, so for a private interface, for instance, it's much smaller.
For each method, GoLand resolves its type and checks whether it implements the interface. This is the moment when all interface's method specs are taken into account.
Not only structures can implement interfaces but other interfaces, too. As the next steps, the IDE looks for all corresponding method specifications, that is, method specifications with the same name and number of parameters. There's a separate index that's responsible for this.
For each method spec, its interface is taken and checked. No resolution is involved this time as it's enough to traverse a syntax tree up to find an interface of an arbitrary method spec.
That's basically the algorithm. There are a few more implementation details to make it works faster, but they don't affect results.
GoLand relies on the IntelliJ Platform and a set of custom written tooling bundled as a custom language plugin on top of it to handle indexing, parsing, navigation and editing code.
Does anybody know the difference between those two terms? In my opinion both refer to exactly the same thing: a framework or API, for which only unconventional behavior must be specified. If there is a difference, could you share with example, in which one term is acceptable, and second one not?
IMHO both refers to the same. Nice examples to it are Maven and JPA.
We're doing a big project on OSGi and adding some commons modules. There's some discussion about naming the artifact.
So, one possibility when naming the module is for example:
cmns-definitions (for common definitions), another is cmns-definition, still another is cmns-def. This has some effect also on the package name. Now it's
xx.xxx.xxx.xxx.xxx.commons.definitions, if changing to cmns-def it would be xx.xxx.xxx.xxx.xxx.commons.def.
Inside this package will be classes like enums and other definitions to be used throughout the system.
I personally lean to cmns-definitions since there's not only 1 definition inside the package. Other people point out that java.util doesn't have only 1 utility there for example. Still, java.util is an abbreviation for me. It can mean java utility or java utilities. Same thing happens with commons-lang.
How would you name the package? Why would you choose this name?
cmns-definitions
cmns-definition
cmns-def
Bonus question: How to name something like cmns-exceptions? That's how I name it. Would you name it cmns-xcpt?
ËDIT:
I'm throwing in my own thoughts on this in the hope of being either confirmed or contradicted. If you can, please do.
According to what I think, the background reason why you name something is to make it easier to understand what's inside it. Or, according to Peter Kriens, to make it easy to remember and being able to automate processes via patterns. Both are valid arguments.
My reasoning is as follows in terms of pattern:
1) When a substantivation occurs and it's well known in the industry, follow it on your naming.
Eg:
"features" is a case on this. We have a module called cmns-features. Does this mean we have many features on this module? No. It means "the module that implements the "features" file from Apache karaf".
"commons" is a substantivation of "common" well-accepted on the industry. It doesn't mean "many common". It means "Common code".
If I see extr-commons as a module name, I know that it contains common code for extr (in this case extraction), for example.
2) When a quantity of classes inside the module are cooperating to give a distinct "one and one only" meaning to the whole, use singular form to name it.
The majority of modules are included here. If I name something cmns-persistence-jpa, I mean that whatever classes inside cooperate together to provide the jpa implementation of cmns-persistence-api. I don't expect 2 implementations inside it, but actually a myriad of classes that together make one implementation. Crystal clear to me. No?
3) When a grouping of classes is done with the sole purpose of gathering classes by affinity, but the classes don't cooperate together to no purpose, use plural.
Here is the case for example of cmns-definitions (enums used by the whole system).
Alternatively, using an abbreviation circumvents the problem, e.g. cmns-def which can be also "interpreted expanded" by a human reader to cmns-definitions. Many people use also "xxxx-util" meaning xxxx-utilities.
Still a third option can be used to pack things together, using a name that itself means a pluralization. The word "api" comes to mind, but any word that pluralizes something would do, like "pack".
Support to these cases (3) are well-known modules like commons-collections (using the plural) or commons-dbcp (using abbreviation) or commons-lang (again abbreviation) and anything that uses api to pack classes together by affinity.
From apache:
commons-collections -> many powerful data structures that accelerate development of most significant Java applications
commons-lang -> host of helper utilities for the java.lang API
commons-dbcp -> package of several database connection pools
'it is just a name ...'
I find in my long career that these just names can make a tremendous difference in productivity. I do not think it makes a difference if you use definitions, definition, or def as long as you're consistent and use patterns in the name that are easy to remember and can be used to automate processes. A build based on a consistent naming scheme is infinitely easier to work with than a build with "nice human display" names that are ad-hoc and have no discernible pattern.
If you use patterns, names tend to become shorter. Now people working with these names usually spent a lot of time with them. So their readability is not nearly as important as their mnemonic value. It turns out that abbreviations of 3 or 4 characters are surprisingly powerful. One of the reason is they work well is that there is only one possible abbreviation while if you go longer there are many candidates.
Anyway, most import part is the overall consistency. Good luck.
definitions (or def or definition) is a bad name because it doesn't have any semantic to a reader. You're in an object oriented world (I suppose) - try to follow its conventions and principles. Modules in Maven should be named after the biggest "abstraction" they contain. "Definition" is a form, not a meaning.
Your question is similar to: "Which class name is better FileUtilities or FileUtils". Answer: none.
Basically what you do with the Definitions and Exceptions is to provide kind of an API for your other modules. So I propose to combine definitions, exceptions and add interfaces to it. Then it makes sense to call it all cmns-api. I normally prefer the singular names as they are shorter but you are free to decide as it is just a name.
(Mathematica version: 8.0.4)
lst = Names["Internal`*"];
Length[lst]
Pick[lst, StringMatchQ[lst, "*Bag*"]]
gives
293
{"Internal`Bag", "Internal`BagLength", "Internal`BagPart", "Internal`StuffBag"}
The Mathematica guidebook for programming By Michael Trott, page 494 says on the Internal context
"But similar to Experimental` context, no guarantee exists that the behavior and syntax of the functions will still be available in later versions of Mathematica"
Also, here is a mention of Bag functions:
Implementing a Quadtree in Mathematica
But since I've seen number of Mathematica experts here suggest Internal`Bag functions and use them themselves, I am assuming it would be sort of safe to use them in actual code? and if so, I have the following question:
Where can I find a more official description of these functions (the API, etc..) like one finds in documenation center? There is nothing now about them now
??Internal`Bag
Internal`Bag
Attributes[Internal`Bag]={Protected}
If I am to start using them, I find it hard to learn about new functions by just looking at some examples and trial and error to see what they do. I wonder if someone here might have a more complete and self contained document on the use of these, describe the API and such more than what is out there already or a link to such place.
The Internal context is exactly what its name says: Meant for internal use by Wolfram developers.
This means, among other things, the following things hold about anything you might find in there:
You most likely won't be able to find any official documentation on it, as it's not meant to be used by the public.
It's not necessarily as robust about invalid arguments. (Crashing the kernel can easily happen on some of them.)
The API may change without notice.
The function may disappear completely without notice.
Now, in practice some of them may be reasonably stable, but I would strongly advise you to steer away from them. Using undocumented APIs can easily leave you in for a lot of pain and a nasty surprise in the future.
I'm looking into writing an addin (or package, if necessary) for Visual Studio 2005 that needs watch window type functionality -- evaluation of expressions and examination of the types. The automation facilities provide
Debugger::GetExpression, which is useful enough, but the information
provided is a bit crude.
From looking through the docs, it sounds like an
IDebugExpressionContext2 would be more useful. With one of these it
looks as if I can get more information from an expression -- detailed
information about the type and any members and so on and so forth, without having everything come through as strings.
I can't find any way of actually getting a IDebugExpressionContext2,
though! IDebugProgramProvider2 sort of looks relevant, in that I
could start with IDebugProgramProvider2::GetProviderProcessData and
then slowly drill down until reaching something that can supply my
expression context -- but I'll need to supply a port to this, and it's
not clear how to retrieve the port corresponding to the current debug
session. (Even if I tried every port, it's not obvious how to tell
which port is the right one...)
I'm becoming suspicious that this simply isn't a supported use case, but with any luck I've simply missed something crashingly obvious.
Can anybody help?
By using IDebugExpressionContext you'll ultamitely end up getting ahold of an instance of IDebugProperty. This interface is implemented by the Expression Evaluator service. This is, typically, a language specific service. It's designed to abstract out the language specific details of evaluating an expression. It understands much higher level commands like "Evaluate", and inspection.
I don't think you're going to get what you're looking for though because you can't get ahold of any kind of type object this way. Nearly all of the inspection methods return their results in String form. For example you won't get the type Int32 but instead the string "int". This makes type inspection next to impossible.
I don't believe what you're trying is a supported case. The type system being evaluated doesn't exist in the current process. It exists in the debuggee process and is fairly difficult to get access to.
There's a hack you could do to get more information about the type of a variable you've evaluated using Debugger::GetExpression method.
You could evaluate "AppDomain.CurrentDomain.GetAssemblies()" to get all the assemblies loaded into the debugee, and cache them in your add-in. You may also need to listen for new assemblies being loaded onto the AppDomain.
Then, run the following:
Expression myExpression = Debugger.GetExpression(...);
Expression typeRefExpression = Debugger.GetExpression("typeof(" + myExpression.Type + ").FullName"
once you have the TypeFullName, you can search inside your assemblies cache for a matching System.Type, and once you have that, you can dig into it all you want using the standart Reflection API.
Note that this will only work in C#, because of its "typeof" keyword. You'll have to use a different keyword for VB.Net, for example.