Blazor Server: Protect information in transit with HTTPS: Are WebSockets not secure enough? - websocket

Blazor Server development is great! One of my concerns is with the security of data being sent through SignalR/WebSockets.
From my understanding the communication between client and server is:
Action is taken by user e.g. clicks button
Javascript innovates the WebSocket communication with my server
Server responds with data that I've returned
Javascript changes the page (DOM)
From Chrome developer tools I can see this happening on the websocket i.e. wss://localhost/_blazor?id=XXXXXXXXXXXXXX. As the websocket is wss:// I thought communication was secure and ensured integrity and confidentiality e.g. man-in-the-middle attacks etc
So why has Microsoft advised to "Always user HTTPS" in their Blazor Server Threat Migration documentation?
Protect information in transit with HTTPS
Blazor Server uses SignalR for communication between the client and
the server. Blazor Server normally uses the transport that SignalR
negotiates, which is typically WebSockets.
Blazor Server doesn't ensure the integrity and confidentiality of the
data sent between the server and the client. Always use HTTPS.
https://learn.microsoft.com/en-us/aspnet/core/blazor/security/server/threat-mitigation?view=aspnetcore-6.0#protect-information-in-transit-with-https

Thank you to Brennan for answering my question in the comments.
So why has Microsoft advised to "Always user HTTPS" in their Blazor Server Threat Migration documentation?
The warning is just general text. The two statements on the documentation are independent of each other.
The below explains the mechanism Blazor Server typically uses for communication between client and server i.e. WebSockets
Protect information in transit with HTTPS
Blazor Server uses SignalR for communication between the client and the server. Blazor Server normally uses the transport that SignalR negotiates, which is typically WebSockets.
The below states you should always use a secure protocol when communicating between client and server i.e. HTTPS
Blazor Server doesn't ensure the integrity and confidentiality of the data sent between the server and the client. Always use HTTPS.
I assumed Microsoft was referring to using standard API (HTTP/2) endpoints to ensure integrity and confidentiality. As Brennan pointed out - WebSockets is an extension of HTTP/1.1, and thus can use HTTPS.
Hopefully, this helps people in the future.

Related

Gateway API - Apache APISIX with Secured Websockets

I am trying to add an API Gateway to a client-server system, which communicates through WebSockets.
The Server is an audio recognition engine that sits in a remote machine, and clients are connecting to it through WebSockets ('wss://...'), sending audio files and receiving their text translate representation.
My main goal is to add a free open-source API Gateway in the middle in order to authenticate\authorize\rate limit\etc (Tried Kong\Tyk\krakenD, but they are not free).
After searching the web, I focused on Apache APISIX gateway.
As a test, I managed to connect the APISIX to a client-server which communicates by http/https and it worked fine.
Moreover, I managed to connect the client with the server on regular websocket connection (ws://) and the data transactions were successful, but no matter what I do I cant connect to the secured connection. Are there any special configurations I should edit in the dashboard?
I'm wondering if anyone knows from experience if it's possible to use
the secured WebSockets with Apache APISIX and if yes, how exactly it should be done - because the docs are missing any informative info\examples, or if there are better solutions known to my problem.
The only WebSocket reference in APISIX dashboard -
What you should do is create an SSL object (you can find it in the sidebar on the left side). See https://apisix.apache.org/docs/apisix/admin-api/#ssl to learn the APISIX SSL object.
You can see an example at https://apisix.apache.org/docs/apisix/certificate
The SSL object provides the required TLS Certificate and Private Key so that this key pair can be used in a TLS handshake according to the TLS SNI sent from clients. After that, your client established a secured connection with APISIX, and now you can send the WebSocket traffic securely.

Is the Hubot web socket connection to Slack secure?

I am setting up hubot with a slack adapter for an enterprise and would like to know if the socket connection between Hubot and Slack is secure.
If not, how can it be secured?
Its hard to say in general whether a product would be regards as "secure" for your enterprise. It all depends on the security requirements specific to your business. e.g. a defense contractor might have much higher security requirements than a retailer.
To answer your question I would therefore suggest to research the security specifics of this product and then compare them with the security requirements of your enterprise.
Here is an overview about the security architecture to get you started:
Hubot uses Slack's RTM API which uses WebSockets as main
communication protocol
To start a connection you need to call either the rtm.start or
rtm.connect endpoint, which is secured by HTTPS. Both endpoints require you to
provide authentication via a Oauth 2.0 token.
Those endpoint return a custom URL for your WebSocket session
All WebSocket communication uses the secure WSS protocol, which applies TLS to secure the connection
I have raised a ticket with Slack support team and they confirmed that connection is WSS and uses TLS 1.2 which makes it secure for enterprise. Thanks!

How does WebSockets server architecture work?

I'm trying to get a better understanding of how the server-side architecture works for WebSockets with the goal of implementing it in an embedded application. It seems that there are 3 different server-side software components in play here: 1) the web server to serve static HTTP pages and handle upgrade request, 2) a WebSockets library such as libwebsockets to handle the "nuts and bolts" of WebSockets communications, and 3) my custom application to actually figure out what to do with incoming data. How do all these fit together? Is it common to have a separate web server and WebSocket handling piece, aka a WebSocket server/daemon?
How does my application communicate with the web server and/or WebSockets library to send/receive data? For example, with CGI, the web server uses environmental variables to send info to the custom application, and stdout to receive responses. What is the equivalent communication system here? Or do you typically link in a WebSocket library into the customer application? But then how would communication with the web server to the WebSocket library + custom application work? Or all 3 combined into a single component?
Here's why I am asking. I'm using the boa web server on a uClinux/no MMU platform on a Blackfin processor with limited memory. There is no native WebSocket support in boa, only CGI. I'm trying to figure out how I can add WebSockets support to that. I would prefer to use a compiled solution as opposed to something interpreted such as JavaScript, Python or PHP. My current application using long polling over CGI, which does not provide adequate performance for planned enhancements.
First off, it's important to understand how a webSocket connection is established because that plays into an important relationship between webSocket connections and your web server.
Every webSocket connection starts with an HTTP request. The browser sends an HTTP request to the host/port that the webSocket connection is requested on. That request might look something like this:
GET /chat HTTP/1.1
Host: example.com:8000
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Version: 13
What distinguishes this request from any other HTTP request to that server is the Upgrade: websocket header in the request. This tells the HTTP server that this particular request is actually a request to initiate a webSocket connection. This header also allows the web server to tell the difference between a regular HTTP request and a request to open a webSocket connection. This allows something very important in the architecture and it was done this way entirely on purpose. This allows the exact same server and port to be used for both serving your web requests and for webSocket connections. All that is needed is a component on your web server that looks for this Upgrade header on all incoming HTTP connections and, if found, it takes over the connection and turns it into a webSocket connection.
Once the server recognizes this upgrade header, it responds with a legal HTTP response, but one that signals the client that the upgrade to the webSocket protocol has been accepted that looks like this:
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
At that point, both client and server keep that socket from the original HTTP request open and both switch to the webSocket protocol.
Now, to your specific questions:
How does my application communicate with the web server and/or
WebSockets library to send/receive data?
Your application may use the built-in webSocket support in modern browsers and can initiate a webSocket connection like this:
var socket = new WebSocket("ws://www.example.com");
This will instruct the browser to initiate a webSocket connection to www.example.com use the same port that the current web page was connected with. Because of the built-in webSocket support in the browser, the above HTTP request and upgrade protocol is handled for you automatically from the client.
On the server-side of things, you need to make sure you are using a web server that has incoming webSocket support and that the support is enabled and configured. Because a webSocket connection is a continuous connection once established, it does not really follow the CGI model at all. There must be at least one long-running process handling live webSocket connections. In server models (like CGI), you would need some sort of webServer add-on that supports this long-running process for your webSocket connections. In a server environment like node.js which is already a long running process, the addition of webSockets is no change at all architecturally - but rather just an additional library to support the webSocket protocol.
I'd suggest you may find this article interesting as it discussions this transition from CGI-style single request handling to the continuous socket connections of webSocket:
Web Evolution: from CGI to Websockets (and how it will help you better monitor your cloud infrastructure)
If you really want to stick with the stdin/stdout model, there are libraries that model that for your for webSockets. Here's one such library. Their tagline is "It's like CGI, twenty years later, for WebSockets".
I'm trying to figure out how I can add WebSockets support to that. I
would prefer to use a compiled solution as opposed to something
interpreted such as JavaScript, Python or PHP.
Sorry, but I'm not familiar with that particular server environment. It will likely take some in-depth searching to find out what your options are. Since a webSocket connection is a continuous connection, then you will need a process that is running continuously that can be the server-side part of the webSocket connection. This can either be something built into your webServer or it can be an additional process that the webServer starts up and forwards incoming connections to.
FYI, I have a custom application at home here built on a Raspberry Pi that uses webSockets for real-time communication with browser web pages and it works just fine. I happen to be using node.js for the server environment and the socket.io library that runs on top of webSockets to give me a higher level interface on top of webSockets. My server code checks several hardware sensors on a regular interval and then whenever there is new/changed data to report, it sends messages down any open webSockets so the connected browsers get real-time updates on the sensor readings.
You would likely need some long-running application that incoming webSocket connections were passed from the web server to your long running process or you'd need to make the webSocket connections on a different port than your web server (so they could be fielded by a completely different server process) in which case you'd have a whole separate server to handle your webSocket requests and sockets (this server would also have to support CORS to enable browsers to connect to it since it would be a different port than your web pages).

Is HTTPS Stateful or Stateless?

I want a bit of clarity on whether HTTPS is stateful or stateless? This is with regards to a RESTful API I built. We were initially using HTTP. Since HTTP essentially works over TCP/IP which is stateless hence HTTP is stateless, but when I switched to HTTPS my API became stateful. I wanted to know whether my conclusion that HTTPS is stateful. is correct or not?
I created my API using a middleware tool called webMethods.
Thanks
TLS/SSL is stateful. The web server and the client (browser) cache the session including the cryptographic keys to improve performance and do not perform key exchange for every request.
HTTP 1 is not stateful. HTTP/2 however defines many stateful components, but the "application layer" still remains stateless.
TL;DR: The transport pipe (TLS) is stateful, original HTTP is not.
Additional note: Cookies and other stateful mechanisms are later additions defined in separate RFC's. They are not part of the original HTTP/1.0 specification, although other stateful mechanisms like caching and HTTP auth are defined HTTP 1.1 RFC and RFC 2617. HTTP 1 is said to be stateless although in practice we use standardized stateful mechanisms. HTTP/2 defines stateful components in its standard and is therefore stateful. A particular HTTP/2 application can use a subset of HTTP/2 features to maintain statelessness.
Theory aside, in practice you use HTTP statefully in your everyday life.
The S in HTTPS is concerned with the transport, not the protocol. The semantics of the HTTP protocol remain the same for HTTPS. As the article about HTTPS on Wikipedia states,
Strictly speaking, HTTPS is not a separate protocol, but refers to use of ordinary HTTP over an encrypted SSL/TLS connection.
And the HTTP protocol is stateless by design, not because it is used most frequently over TCP/IP (nothing stops you to use HTTP over UDP for example).
HTTPS is HTTP over a secure connection.
HTTP is a higher level than a connection.
When connecting to a web server, your connection is (maybe always?) of type TCP/IP. So, in case you are visiting a website via HTTPS, your TCP/IP connection is encrypted.
The data the server and/or client send has not been encrypted by the server and/or client. It is just sent, as it is usually via HTTP, but this time using a connection via TCP/IP that is secured via encryption.
If data were vehicles, and the connexion the highway, then:
- using HTTP would be like the vehicles going on the highway, and everyone can see them;
- using HTTPS would be like the same, but the vehicles go through a tunnel or anything that prevents people not on the highway from seeing them. You can determine there is trafic, but you cannot identify the vehicles, except on both ends of the tunnel.
I believe this is an image close to what happens behind the scene. But I'm no expert. I just hope it helps.
HTTP and HTTPS both are stateless protocols. The S in HTTPS stands for Secure and it refers to use of ordinary HTTP over an encrypted SSL/TLS connection.
Use of JWT tokens or the traditional way of establishing sessions using cookies help us to overcome the problem of HTTP being a stateless protocol, as it enables the server to authenticate the identity of the client, so that you don't need to login every time you click a link to navigate on the web-page.
So For example, when you log in to the website of your bank, it only asks you to enter your login details once. Once you are signed in, you don't need to re-enter them when you navigate to the account settings page, this is because the bank site is able to authenticate your identity using JWT tokens.
JWT tokens are only used on HTTPS and not in HTTP, because the connection is encrypted in HTTPS, so it cannot be intercepted by anyone.
Thus, HTTP and HTTPS both are stateless protocols, but JWT Tokens provides a workaround for it.
I believe HTTPS is a stateful protocol as it contains Session identifier field.This generated by server initially to identify a session with the chosen client.

Why don't current websocket client implementations support proxies?

A Web Socket detects the presence of a proxy server and automatically sets up a tunnel to pass through the proxy. The tunnel is established by issuing an HTTP CONNECT statement to the proxy server, which requests for the proxy server to open a TCP/IP connection to a specific host and port. Once the tunnel is set up, communication can flow unimpeded through the proxy. Since HTTP/S works in a similar fashion, secure Web Sockets over SSL can leverage the same HTTP CONNECT technique. [1]
OK, sounds useful! But, in the client implementations I've seen thus far (Go [2], Java [3]) I do not see anything related to proxy detection.
Am I missing something or are these implementations just young? I know WebSockets is extremely new and client implementations may be equally young and immature. I just want to know if I'm missing something about proxy detection and handling.
[1] http://www.kaazing.org/confluence/display/KAAZING/What+is+an+HTML+5+WebSocket
[2] http://golang.org/src/pkg/websocket/client.go
[3] http://github.com/adamac/Java-WebSocket-client/raw/master/src/com/sixfire/websocket/WebSocket.java
Let me try to explain the different success rates you may have encountered. While the HTML5 Web Socket protocol itself is unaware of proxy servers and firewalls, it features an HTTP-compatible handshake so that HTTP servers can share their default HTTP and HTTPS ports (80 and 443) with a Web Sockets gateway or server.
The Web Socket protocol defines a ws:// and wss:// prefix to indicate a WebSocket and a WebSocket Secure connection, respectively. Both schemes use an HTTP upgrade mechanism to upgrade to the Web Socket protocol. Some proxy servers are harmless and work fine with Web Sockets; others will prevent Web Sockets from working correctly, causing the connection to fail. In some cases additional proxy server configuration may be required, and certain proxy servers may need to be upgraded to support Web Sockets.
If unencrypted WebSocket traffic flows through an explicit or a transparent proxy server on its way the WebSocket server, then, whether or not the proxy server behaves as it should, the connection is almost certainly bound to fail today (in the future, proxy servers may become Web Socket aware). Therefore, unencrypted WebSocket connections should be used only in the simplest topologies.
If encrypted WebSocket connection is used, then the use of Transport Layer Security (TLS) in the Web Sockets Secure connection ensures that an HTTP CONNECT command is issued when the browser is configured to use an explicit proxy server. This sets up a tunnel, which provides low-level end-to-end TCP communication through the HTTP proxy, between the Web Sockets Secure client and the WebSocket server. In the case of transparent proxy servers, the browser is unaware of the proxy server, so no HTTP CONNECT is sent. However, since the wire traffic is encrypted, intermediate transparent proxy servers may simply allow the encrypted traffic through, so there is a much better chance that the WebSocket connection will succeed if Web Sockets Secure is used. Using encryption, of course, is not free, but often provides the highest success rate.
One way to see it in action is to download and install the Kaazing WebSocket Gateway--a highly optimized, proxy-aware WebSocket gateway, which provides native WebSocket support as well as a full emulation of the standard for older browsers.
The answer is that these clients simply do not support proxies.
-Occam
The communication channel is already established by the time the WebSocket protocol enters the scene. The WebSocket is built on top of TCP and HTTP so you don't have to care about the things already done by these protocols, including proxies.
When a WebSocket connection is established it always starts with a HTTP/TCP connection which is later "upgraded" during the "handshake" phase of WebSocket. At this time the tunnel is established so the proxies are transparent, there's no need to care about them.
Regarding websocket clients and transparent proxies,
I think websocket client connections will fail most of the time for the following reasons (not tested):
If the connection is in clear, since the client does not know it is communicating with a http proxy server, it won't send the "CONNECT TO" instruction that turns the http proxy into a tcp proxy (needed for the client after the websocket handshake). It could work if the proxy supports natively websocket and handles the URL with the ws scheme differently than http.
If the connection is in SSL, the transparent proxy cannot know to which server it should connect to since it has decrypt the host name in the https request. It could by either generating a self-signed certificate on the fly (like for SSLStrip) or providing its own static certificate and decrypt the communication but if the client validates the server certificate it will fail (see https://serverfault.com/questions/369829/setting-up-a-transparent-ssl-proxy).
You mentioned Java proxies, and to respond to that I wanted to mention that Java-Websocket now supports proxies.
You can see the information about that here: http://github.com/TooTallNate/Java-WebSocket/issues/88
websocket-client, a Python package, supports proxies, at the very least over secure scheme wss:// as in that case proxy need no be aware of the traffic it forwards.
https://github.com/liris/websocket-client/commit/9f4cdb9ec982bfedb9270e883adab2e028bbd8e9

Resources