I have to create a script that given a country and a sport you get the number of medalists and medals won after reading a csv file.
The csv is called "athletes.csv" and have this header
id|name|nationality|sex|date_of_birth|height|weight|sport|gold|silver|bronze|info
when you call the script you have to add the nationality and sport as parameters.
The script i have created is this one:
#!/bin/bash
participants=0
medals=0
while IFS=, read -ra array
do
if [[ "${array[2]}" == $1 && "${array[7]}" == $2 ]]
then
participants=$participants++
medals=$(($medals+${array[8]}+${array[9]}+${array[10]))
fi
done < athletes.csv
echo $participants
echo $medals
where array[3] is the nationality, array[8] is the sport and array[9] to [11] are the number of medals won.
When i run the script with the correct paramters I get 0 participants and 0 medals.
Could you help me to understand what I'm doing wrong?
Note I cannot use awk nor grep
Thanks in advance
Try this:
#! /bin/bash -p
nation_arg=$1
sport_arg=$2
declare -i participants=0
declare -i medals=0
declare -i line_num=0
while IFS=, read -r _ _ nation _ _ _ _ sport ngold nsilver nbronze _; do
(( ++line_num == 1 )) && continue # Skip the header
[[ $nation == "$nation_arg" && $sport == "$sport_arg" ]] || continue
participants+=1
medals+=ngold+nsilver+nbronze
done <athletes.csv
declare -p participants
declare -p medals
The code uses named variables instead of numbered positional parameters and array indexes to try to improve readability and maintainability.
Using declare -i means that strings assigned to the declared variables are treated as arithmetic expressions. That reduces clutter by avoiding the need for $(( ... )).
The code assumes that the field separator in the CSV file is ,, not | as in the header. If the separator is really |, replace IFS=, with IFS='|'.
I'm assuming that the field delimiter of your CSV file is a comma but you can set it to whatever character you need.
Here's a fixed version of your code:
#!/bin/bash
participants=0
medals=0
{
# skip the header
read
# process the records
while IFS=',' read -ra array
do
if [[ "${array[2]}" == $1 && "${array[7]}" == $2 ]]
then
(( participants++ ))
medals=$(( medals + array[8] + array[9] + array[10] ))
fi
done
} < athletes.csv
echo "$participants" "$medals"
remark: As $1 and $2 are left unquoted they are subject to glob matching (right side of [[ ... == ... ]]). For example you'll be able to show the total number of medals won by the US with:
./script.sh 'US' '*'
But I have to say, doing text processing with pure shell isn't considered a good practice; there exists dedicated tools for that. Here's an example with awk:
awk -v FS=',' -v country="$1" -v sport="$2" '
BEGIN {
participants = medals = 0
}
NR == 1 { next }
$3 == country && $8 == sport {
participants++
medals += $9 + $10 + $11
}
END { print participants, medals }
' athletes.csv
There's also a potential problem remaining: the CSV format might need a real CSV parser for reading it accurately. There exists a few awk libraries for that but IMHO it's simpler to use a CSV‑aware tool that provides the functionalities that you need.
Here's an example with Miller:
mlr --icsv --ifs=',' filter -s country="$1" -s sport="$2" '
begin {
#participants = 0;
#medals = 0;
}
$nationality == #country && $sport == #sport {
#participants += 1;
#medals += $gold + $silver + $bronze;
}
false;
end { print #participants, #medals; }
' athletes.csv
Related
I am trying to write a util function in a bash script that can take a multi-line string and append it to the supplied file if it does not already exist.
This works fine using grep if the pattern does not contain \n.
if grep -qF "$1" $2
then
return 1
else
echo "$1" >> $2
fi
Example usage
append 'sometext\nthat spans\n\tmutliple lines' ~/textfile.txt
I am on MacOS btw which has presented some problems with some of the solutions I've seen posted elsewhere being very linux specific. I'd also like to avoid installing any other tools to achieve this if possible.
Many thanks
If the files are small enough to slurp into a Bash variable (you should be OK up to a megabyte or so on a modern system), and don't contain NUL (ASCII 0) characters, then this should work:
IFS= read -r -d '' contents <"$2"
if [[ "$contents" == *"$1"* ]]; then
return 1
else
printf '%s\n' "$1" >>"$2"
fi
In practice, the speed of Bash's built-in pattern matching might be more of a limitation than ability to slurp the file contents.
See the accepted, and excellent, answer to Why is printf better than echo? for an explanation of why I replaced echo with printf.
Using awk:
awk '
BEGIN {
n = 0 # length of pattern in lines
m = 0 # number of matching lines
}
NR == FNR {
pat[n++] = $0
next
}
{
if ($0 == pat[m])
m++
else if (m > 0 && $0 == pat[0])
m = 1
else
m = 0
}
m == n {
exit
}
END {
if (m < n) {
for (i = 0; i < n; i++)
print pat[i] >>FILENAME
}
}
' - "$2" <<EOF
$1
EOF
if necessary, one would need to properly escape any metacharacters inside FS | OFS :
jot 7 9 |
{m,g,n}awk 'BEGIN { FS = OFS = "11\n12\n13\n"
_^= RS = (ORS = "") "^$" } _<NF || ++NF'
9
10
11
12
13
14
15
jot 7 -2 | (... awk stuff ...)
-2
-1
0
1
2
3
4
11
12
13
I'm writing a bash script which takes a number, and also a comma-separated sequence of values and strings, e.g.: 3,15,4-7,19-20. I want to check whether the number is contained in the set corresponding to the sequence. For simplicity, assume no comma-separated elements intersect, and that the elements are sorted in ascending order.
Is there a simple way to do this in bash other than the brute-force naive way? Some shell utility which does something like that for me, maybe something related to lpr which already knows how to process page range sequences etc.
Is awk cheating?:
$ echo -n 3,15,4-7,19-20 |
awk -v val=6 -v RS=, -F- '(NF==1&&$1==val) || (NF==2&&$1<=val&&$2>=val)' -
Output:
4-7
Another version:
$ echo 19 |
awk -v ranges=3,15,4-7,19-20 '
BEGIN {
split(ranges,a,/,/)
}
{
for(i in a) {
n=split(a[i],b,/-/)
if((n==1 && $1==a[i]) || (n==2 && $1>=b[1] && $1<=b[2]))
print a[i]
}
}' -
Outputs:
19-20
The latter is better as you can feed it more values from a file etc. Then again the former is shorter. :D
Pure bash:
check() {
IFS=, a=($2)
for b in "${a[#]}"; do
IFS=- c=($b); c+=(${c[0]})
(( $1 >= c[0] && $1 <= c[1] )) && break
done
}
$ check 6 '3,15,4-7,19-20' && echo "yes" || echo "no"
yes
$ check 42 '3,15,4-7,19-20' && echo "yes" || echo "no"
no
As bash is tagged, why not just
inrange() { for r in ${2//,/ }; do ((${r%-*}<=$1 && $1<=${r#*-})) && break; done; }
Then test it as usual:
$ inrange 6 3,15,4-7,19-20 && echo yes || echo no
yes
$ inrange 42 3,15,4-7,19-20 && echo yes || echo no
no
A function based on #JamesBrown's method:
function match_in_range_seq {
(( $# == 2 )) && [[ -n "$(echo -n "$2" | awk -v val="$1" -v RS=, -F- '(NF==1&&$1==val) || (NF==2&&$1<=val&&$2>=val)' - )" ]]
}
Will return 0 (in $?) if the second argument (the range sequence) contains the first argument, 1 otherwise.
Another awk idea using two input (-v) variables:
# use of function wrapper is optional but cleaner for the follow-on test run
in_range() {
awk -v value="$1" -v r="$2" '
BEGIN { n=split(r,ranges,",")
for (i=1;i<=n;i++) {
low=high=ranges[i]
if (ranges[i] ~ "-") {
split(ranges[i],x,"-")
low=x[1]
high=x[2]
}
if (value >= low && value <= high) {
print value,"found in the range:",ranges[i]
exit
}
}
}'
}
NOTE: the exit assumes no overlapping ranges, ie, value will not be found in more than one 'range'
Take for a test spin:
ranges='3,15,4-7,19-20'
for value in 1 6 15 32
do
echo "########### value = ${value}"
in_range "${value}" "${ranges}"
done
This generates:
########### value = 1
########### value = 6
6 found in the range: 4-7
########### value = 15
15 found in the range: 15
########### value = 32
NOTES:
OP did not mention what to generate as output if no range match is found; code could be modified to output a 'not found' message as needed
in a comment OP mentioned possibly running the search for a number of values; code could be modified to support such a requirement but would need more input (eg, format of list of values, desired output and how to be used/captured by calling process, etc)
Given a single line of input with 'n' arguments which are space delimited. The input arguments themselves are variable. The input is given through an external file.
I want to move specific elements to variables depending on regular expressions. As such, I was thinking of declaring a pointer variable first to keep track of where on the line I am. In addition, the assignment to variable is independent of numerical order, and depending on input some variables may be skipped entirely.
My current method is to use
awk '{print $1}' file.txt
However, not all elements are fixed and I need to account for elements that may be absent, or may have multiple entries.
UPDATE: I found another method.
file=$(cat /file.txt)
for i in ${file[#]}; do
echo $i >> split.txt;
done
With this way, instead of a single line with multiple arguments, we get multiple lines with a single argument. as such, we can now use var#=(grep --regexp="[pattern]" split.txt. Now I just need to figure out how best to use regular expressions to filter this mess.
Let me take an example.
My input strings are:
RON KKND 1534Z AUTO 253985G 034SRT 134OVC 04/32
RON KKND 5256Z 143623G72K 034OVC 074OVC 134SRT 145PRT 13/00
RON KKND 2234Z CON 342523G CLS 01/M12 RMK
So the variable assignment for each of the above would be:
var1=RON var2=KKND var3=1534Z var4=TRUE var5=FALSE var6=253985G varC=2 varC1=034SRT varC2=134OVC var7=04/32
var1=RON var2=KKND var3=5256Z var4=FALSE var5=FALSE var6=143623G72K varC=4 varC1=034OVC varC2=074OVC varC3=134SRT varC4=145PRT var7=13/00
var1=RON var2=KKND var3=2234Z var4=FALSE var5=TRUE var6=342523G varC=0 var7=01/M12
So, the fourth argument might be var4, var5, or var6.
The fifth argument might be var5, var6, or match another criteria.
The sixth argument may or may not be var6. Between var6 and var7 can be determined by matching each argument with */*
Boiling this down even more, The positions on the input of var1, var2 and var3 are fixed but after that I need to compare, order, and assign. In addition, the arguments themselves can vary in character length. The relative position of each section to be divided is fixed in relation to its neighbors. var7 will never be before var6 in the input for example, and if var4 and var5 are true, then the 4th and 5th argument would always be 'AUTO CON' Some segments will always be one argument, and others more than one. The relative position of each is known. As for each pattern, some have a specific character in a specific location, and others may not have any flag on what it is aside from its position in the sequence.
So I need awk to recognize a pointer variable as every argument needs to be checked until a specific match is found
#Check to see if var4 or var5 exists. if so, flag and increment pointer
pointer=4
if (awk '{print $$pointer}' file.txt) == "AUTO" ; then
var4="TRUE"
pointer=$pointer+1
else
var4="FALSE"
fi
if (awk '{print $$pointer}' file.txt) == "CON" ; then
var5="TRUE"
pointer=$pointer+1
else
var5="FALSE"
fi
#position of var6 is fixed once var4 and var5 are determined
var6=$(awk '{print $$pointer}' file.txt)
pointer=$pointer+1
#Count the arguments between var6 and var7 (there may be up to ten)
#and separate each to decode later. varC[0-9] is always three upcase
# letters followed by three numbers. Use this counter later when decoding.
varC=0
until (awk '{print $$pointer}' file.txt) == "*/*" ; do
varC($varC+1)=(awk '{print $$pointer}' file.txt)
varC=$varC+1
pointer=$pointer+1
done
#position of var7 is fixed after all arguments of varC are handled
var7=$(awk '{print $$pointer}' file.txt)
pointer=$pointer+1
I know the above syntax is incorrect. The question is how do I fix it.
var7 is not always at the end of the input line. Arguments after var7 however do not need to be processed.
Actually interpreting the patterns I haven't gotten to yet. I intend to handle that using case statements comparing the variables with regular expressions to compare against. I don't want to use awk to interpret the patterns directly as that would get very messy. I have contemplated using for n in $string, but to do that would mean comparing every argument to every possible combination directly (And there are multiple segments each with multiple patterns) and is such impractical. I'm trying to make this a two step process.
Please try the following:
#!/bin/bash
# template for variable names
declare -a namelist1=( "var1" "var2" "var3" "var4" "var5" "var6" "varC" )
declare -a ary
# read each line and assign ary to the elements
while read -r -a ary; do
if [[ ${ary[3]} = AUTO ]]; then
ary=( "${ary[#]:0:3}" "TRUE" "FALSE" "${ary[4]}" "" "${ary[#]:5:3}" )
elif [[ ${ary[3]} = CON ]]; then
ary=( "${ary[#]:0:3}" "FALSE" "TRUE" "${ary[4]}" "" "${ary[#]:5:3}" )
else
ary=( "${ary[#]:0:3}" "FALSE" "FALSE" "${ary[3]}" "" "${ary[#]:4:5}" )
fi
# initial character of the 7th element
ary[6]=${ary[7]:0:1}
# locate the index of */* entry in the ary and adjust the variable names
for (( i=0; i<${#ary[#]}; i++ )); do
if [[ ${ary[$i]} == */* ]]; then
declare -a namelist=( "${namelist1[#]}" )
for (( j=1; j<=i-7; j++ )); do
namelist+=( "$(printf "varC%d" "$j")" )
done
namelist+=( "var7" )
fi
done
# assign variables to array elements
for (( i=0; i<${#ary[#]}; i++ )); do
# echo -n "${namelist[$i]}=${ary[$i]} " # for debugging
declare -n p="${namelist[$i]}"
p="${ary[$i]}"
done
# echo "var1=$var1 var2=$var2 var3=$var3 ..." # for debugging
done < file.txt
Note that the script above just assigns bash variables and does not print anything
unless you explicitly echo or printf the variables.
Updated: This code shows how to decide variable value based on pattern match , multiple times.
one code block in pure bash and the other in gawk manner
bash code block requires associative Array support, which is not available in very early versions
grep is also required to do pattern matching
tested with GNU bash, version 4.2.46(2)-release (x86_64-redhat-linux-gnu) and grep (GNU grep) 2.20
and stick to printf other than echo after I learn why-is-printf-better-than-echo
when using bash I consider it good practice to be more defensive
#!/bin/bash
declare -ga outVars
declare -ga lineBuf
declare -g NF
#force valid index starts from 1
#consistent with var* name pattern
outVars=(unused var1 var2 var3 var4 var5 var6 varC var7)
((numVars=${#outVars[#]} - 1))
declare -gr numVars
declare -r outVars
function e_unused {
return
}
function e_var1 {
printf "%s" "${lineBuf[1]}"
}
function e_var2 {
printf "%s" "${lineBuf[2]}"
}
function e_var3 {
printf "%s" "${lineBuf[3]}"
}
function e_var4 {
if [ "${lineBuf[4]}" == "AUTO" ] ;
then
printf "TRUE"
else
printf "FALSE"
fi
}
function e_var5 {
if [ "${lineBuf[4]}" == "CON" ] ;
then
printf "TRUE"
else
printf "FALSE"
fi
}
function e_varC {
local var6_idx=4
if [ "${lineBuf[4]}" == "AUTO" -o "${lineBuf[4]}" == "CON" ] ;
then
var6_idx=5
fi
local var7_idx=$NF
local i
local count=0
for ((i=NF;i>=1;i--));
do
if [ $(grep -cE '^.*/.*$' <<<${lineBuf[$i]}) -eq 1 ];
then
var7_idx=$i
break
fi
done
((varC = var7_idx - var6_idx - 1))
if [ $varC -eq 0 ];
then
printf 0
return;
fi
local cFamily=""
local append
for ((i=var6_idx;i<=var7_idx;i++));
do
if [ $(grep -cE '^[0-9]{3}[A-Z]{3}$' <<<${lineBuf[$i]}) -eq 1 ];
then
((count++))
cFamily="$cFamily varC$count=${lineBuf[$i]}"
fi
done
printf "%s %s" $count "$cFamily"
}
function e_var6 {
if [ "${lineBuf[4]}" == "AUTO" -o "${lineBuf[4]}" == "CON" ] ;
then
printf "%s" "${lineBuf[5]}"
else
printf "%s" "${lineBuf[4]}"
fi
}
function e_var7 {
local i
for ((i=NF;i>=1;i--));
do
if [ $(grep -cE '^.*/.*$' <<<${lineBuf[$i]}) -eq 1 ];
then
printf "%s" "${lineBuf[$i]}"
return
fi
done
}
while read -a lineBuf ;
do
NF=${#lineBuf[#]}
lineBuf=(unused ${lineBuf[#]})
for ((i=1; i<=numVars; i++));
do
printf "%s=" "${outVars[$i]}"
(e_${outVars[$i]})
printf " "
done
printf "\n"
done <file.txt
The gawk specific extension Indirect Function Call is used in the awk code below
the code assigns a function name for every desired output variable.
different pattern or other transformation can be applied in its specific function
doing so to avoid tons of if-else-if-else
and is also easier to read and extend.
for the special varC family, the function pick_varC played a trick
after varC is determined ,its value consists of multiple output fields.
if varC=2, the value of varC is returned as 2 varC1=034SRT varC2=134OVC
that is actual value of varC appending all follow members.
gawk '
BEGIN {
keys["var1"] = "pick_var1";
keys["var2"] = "pick_var2";
keys["var3"] = "pick_var3";
keys["var4"] = "pick_var4";
keys["var5"] = "pick_var5";
keys["var6"] = "pick_var6";
keys["varC"] = "pick_varC";
keys["var7"] = "pick_var7";
}
function pick_var1 () {
return $1;
}
function pick_var2 () {
return $2;
}
function pick_var3 () {
return $3;
}
function pick_var4 () {
for (i=1;i<=NF;i++) {
if ($i == "AUTO") {
return "TRUE";
}
}
return "FALSE";
}
function pick_var5 () {
for (i=1;i<=NF;i++) {
if ($i == "CON") {
return "TRUE";
}
}
return "FALSE";
}
function pick_varC () {
for (i=1;i<=NF;i++) {
if (($i=="AUTO" || $i=="CON")) {
break;
}
}
var6_idx = 5;
if ( i!=4 ) {
var6_idx = 4;
}
var7_idx = NF;
for (i=1;i<=NF;i++) {
if ($i~/.*\/.*/) {
var7_idx = i;
}
}
varC = var7_idx - var6_idx - 1;
if ( varC == 0) {
return varC;
}
count = 0;
cFamily = "";
for (i = 1; i<=varC;i++) {
if ($(var6_idx+i)~/[0-9]{3}[A-Z]{3}/) {
cFamily = sprintf("%s varC%d=%s",cFamily,i,$(var6_idx+i));
count++;
}
}
varC = sprintf("%d %s",count,cFamily);
return varC;
}
function pick_var6 () {
for (i=1;i<=NF;i++) {
if (($i=="AUTO" || $i=="CON")) {
break;
}
}
if ( i!=4 ) {
return $4;
} else {
return $5
}
}
function pick_var7 () {
for (i=1;i<=NF;i++) {
if ($i~/.*\/.*/) {
return $i;
}
}
}
{
for (k in keys) {
pickFunc = keys[k];
printf("%s=%s ",k,#pickFunc());
}
printf("\n");
}
' file.txt
test input
RON KKND 1534Z AUTO 253985G 034SRT 134OVC 04/32
RON KKND 5256Z 143623G72K 034OVC 074OVC 134SRT 145PRT 13/00
RON KKND 2234Z CON 342523G CLS 01/M12 RMK
script output
var1=RON var2=KKND var3=1534Z var4=TRUE var5=FALSE varC=2 varC1=034SRT varC2=134OVC var6=253985G var7=04/32
var1=RON var2=KKND var3=5256Z var4=FALSE var5=FALSE varC=4 varC1=034OVC varC2=074OVC varC3=134SRT varC4=145PRT var6=143623G72K var7=13/00
var1=RON var2=KKND var3=2234Z var4=FALSE var5=TRUE varC=0 var6=342523G var7=01/M12
112345D000000000000129
123456D000000000000129
112345C000000000000129
123456C000000000000129
123456C000000000000126
position 2-6 is the account number
position 7-22 is the debit or credit value based on D or C in 7th position
want to sum the credit and debit value on the per account basis
tried
awk '{array[substr($0,7,1)]+=substr($0,8,15)+0} END{for(i in array){print array[i]}}')"
but since the file is huge its taking more time is there a way we can find out this one more faster
MVCE
fileA contains the account number + other info
fileB contains the exampe above with debit credit
typeset -i stbal2
typeset -i endbal2
DONE=false
until $DONE; do
read s || DONE=true
accountnumber=${s:1:10} //account number
endbal=${s:26:1} //contain + or - sign
endbal1=${s:11:15} //balance
endbal2=$endbal1 //strip of leading zeros
endbal3=$endbal$endbal2 //concatenate the sign with balance
//similar process as above to get the start balance
stbal=${s:42:1}
stbal1=${s:27:15}
stbal2=$stbal1
stbal3=$stbal$stbal2
creditdebit="$(grep "${bban}" ${fileB} | awk '{array[substr($0,7,1)]+=substr($0,8,15)+0} END{for(i in array){print array[i]}}')"
set -- $creditdebit
... further logic
done < ${fileA}
Without a complete MCVE its a guess but this might be what you're looking for, using GNU awk for true 2D arrays:
$ awk '
{ tots[substr($0,7,1)][substr($0,2,5)] += substr($0,8) }
END {
for (type in tots) {
for (id in tots[type]) {
print type, id, tots[type][id]+0
}
}
}
' file
C 12345 129
C 23456 255
D 12345 129
D 23456 129
in ksh you might do something like that : (myfile.txt being your information file)
#!/bin/ksh
typeset -A Ledger
typeset -i amount
typeset -L10 Col1
typeset -L10 Col2
while read line
do
account=${line:1:5}
action=${line:6:1}
amount=${line:7:21}
if [[ $action == "C" ]]; then
Ledger[$account]=$(( ${Ledger[$account]} + $amount ))
elif [[ $action == "D" ]]; then
Ledger[$account]=$(( ${Ledger[$account]} - $amount ))
fi
done < myfile.txt
Col1="Account"
Col2="Balance"
print "$Col1$Col2\n"
for i in ${!Ledger[#]}; do
Col1=$i
Col2=${Ledger[$i]}
print "$Col1$Col2"
done
With your example my output is :
Account Balance
12345 0
23456 126
Hope it could help
Consider a plain text file containing page-breaking ASCII control character "Form Feed" ($'\f'):
alpha\n
beta\n
gamma\n\f
one\n
two\n
three\n
four\n
five\n\f
earth\n
wind\n
fire\n
water\n\f
Note that each page has a random number of lines.
Need a bash routine that return the page number of a given line number from a text file containing page-breaking ASCII control character.
After a long time researching the solution I finally came across this piece of code:
function get_page_from_line
{
local nline="$1"
local input_file="$2"
local npag=0
local ln=0
local total=0
while IFS= read -d $'\f' -r page; do
npag=$(( ++npag ))
ln=$(echo -n "$page" | wc -l)
total=$(( total + ln ))
if [ $total -ge $nline ]; then
echo "${npag}"
return
fi
done < "$input_file"
echo "0"
return
}
But, unfortunately, this solution proved to be very slow in some cases.
Any better solution ?
Thanks!
The idea to use read -d $'\f' and then to count the lines is good.
This version migth appear not ellegant: if nline is greater than or equal to the number of lines in the file, then the file is read twice.
Give it a try, because it is super fast:
function get_page_from_line ()
{
local nline="${1}"
local input_file="${2}"
if [[ $(wc -l "${input_file}" | awk '{print $1}') -lt nline ]] ; then
printf "0\n"
else
printf "%d\n" $(( $(head -n ${nline} "${input_file}" | grep -c "^"$'\f') + 1 ))
fi
}
Performance of awk is better than the above bash version. awk was created for such text processing.
Give this tested version a try:
function get_page_from_line ()
{
awk -v nline="${1}" '
BEGIN {
npag=1;
}
{
if (index($0,"\f")>0) {
npag++;
}
if (NR==nline) {
print npag;
linefound=1;
exit;
}
}
END {
if (!linefound) {
print 0;
}
}' "${2}"
}
When \f is encountered, the page number is increased.
NR is the current line number.
----
For history, there is another bash version.
This version is using only built-it commands to count the lines in current page.
The speedtest.sh that you had provided in the comments showed it is a little bit ahead (20 sec approx.) which makes it equivalent to your version:
function get_page_from_line ()
{
local nline="$1"
local input_file="$2"
local npag=0
local total=0
while IFS= read -d $'\f' -r page; do
npag=$(( npag + 1 ))
IFS=$'\n'
for line in ${page}
do
total=$(( total + 1 ))
if [[ total -eq nline ]] ; then
printf "%d\n" ${npag}
unset IFS
return
fi
done
unset IFS
done < "$input_file"
printf "0\n"
return
}
awk to the rescue!
awk -v RS='\f' -v n=09 '$0~"^"n"." || $0~"\n"n"." {print NR}' file
3
updated anchoring as commented below.
$ for i in $(seq -w 12); do awk -v RS='\f' -v n="$i"
'$0~"^"n"." || $0~"\n"n"." {print n,"->",NR}' file; done
01 -> 1
02 -> 1
03 -> 1
04 -> 2
05 -> 2
06 -> 2
07 -> 2
08 -> 2
09 -> 3
10 -> 3
11 -> 3
12 -> 3
A script of similar length can be written in bash itself to locate and respond to the embedded <form-feed>'s contained in a file. (it will work for POSIX shell as well, with substitute for string index and expr for math) For example,
#!/bin/bash
declare -i ln=1 ## line count
declare -i pg=1 ## page count
fname="${1:-/dev/stdin}" ## read from file or stdin
printf "\nln:pg text\n" ## print header
while read -r l; do ## read each line
if [ ${l:0:1} = $'\f' ]; then ## if form-feed found
((pg++))
printf "<ff>\n%2s:%2s '%s'\n" "$ln" "$pg" "${l:1}"
else
printf "%2s:%2s '%s'\n" "$ln" "$pg" "$l"
fi
((ln++))
done < "$fname"
Example Input File
The simple input file with embedded <form-feed>'s was create with:
$ echo -e "a\nb\nc\n\fd\ne\nf\ng\nh\n\fi\nj\nk\nl" > dat/affex.txt
Which when output gives:
$ cat dat/affex.txt
a
b
c
d
e
f
g
h
i
j
k
l
Example Use/Output
$ bash affex.sh <dat/affex.txt
ln:pg text
1: 1 'a'
2: 1 'b'
3: 1 'c'
<ff>
4: 2 'd'
5: 2 'e'
6: 2 'f'
7: 2 'g'
8: 2 'h'
<ff>
9: 3 'i'
10: 3 'j'
11: 3 'k'
12: 3 'l'
With Awk, you can define RS (the record separator, default newline) to form feed (\f) and IFS (the input field separator, default any sequence of horizontal whitespace) to newline (\n) and obtain the number of lines as the number of "fields" in a "record" which is a "page".
The placement of form feeds in your data will produce some empty lines within a page so the counts are off where that happens.
awk -F '\n' -v RS='\f' '{ print NF }' file
You could reduce the number by one if $NF == "", and perhaps pass in the number of the desired page as a variable:
awk -F '\n' -v RS='\f' -v p="2" 'NR==p { print NF - ($NF == "") }' file
To obtain the page number for a particular line, just feed head -n number to the script, or loop over the numbers until you have accrued the sum of lines.
line=1
page=1
for count in $(awk -F '\n' -v RS='\f' '{ print NF - ($NF == "") }' file); do
old=$line
((line += count))
echo "Lines $old through line are on page $page"
((page++)
done
This gnu awk script prints the "page" for the linenumber given as command line argument:
BEGIN { ffcount=1;
search = ARGV[2]
delete ARGV[2]
if (!search ) {
print "Please provide linenumber as argument"
exit(1);
}
}
$1 ~ search { printf( "line %s is on page %d\n", search, ffcount) }
/[\f]/ { ffcount++ }
Use it like awk -f formfeeds.awk formfeeds.txt 05 where formfeeds.awk is the script, formfeeds.txt is the file and '05' is a linenumber.
The BEGIN rule deals mostly with the command line argument. The other rules are simple rules:
$1 ~ search applies when the first field matches the commandline argument stored in search
/[\f]/ applies when there is a formfeed