I am trying to implement smooth zoomable audio waveform but am puzzled with the correct approach to implement zoom. I searched internet but there is very little or no information.
So here is what I have done:
Read audio samples from file and compute waveform points with samplesPerPixel = 10, 20, 40, 80, ....,10240. Store the datapoints for each scale (11 in total here). Max and min are also stored along with points for each samplesPerPixel.
When zooming, switch to the closest dataset. So if samplesPerPixel at current width is 70, then use dataset corresponding to samplesPerPixel = 80. The correct dataset index is easily found using log2(samplesPerPixel).
Use subsampling of the dataset to draw waveform points. So if we samplesPerPixel = 41 and we are using data set for zoom 80, then we use the scaling factor 80/41 to subsample.
let scaleFactor = 80.0/41.0
x = waveformPointX[i*scaleFactor]
I am yet to find a better approach and not too sure if the above approach of subsampling is correct, but for sure this approach consumes lot of memory and also is slow to load data at the start. How do audio editors implement zooming in waveform, is there an efficient approach?
EDIT: Here is a code for computing mipmaps.
public class WaveformAudioSample {
var samplesPerPixel:Int = 0
var totalSamples:Int = 0
var samples: [CGFloat] = []
var sampleMax: CGFloat = 0
}
private func downSample(_ waveformSample:WaveformAudioSample, factor:Int) {
NSLog("Averaging samples")
var downSampledAudioSamples:WaveformAudioSample = WaveformAudioSample()
downSampledAudioSamples.samples = [CGFloat](repeating: 0, count: waveformSample.samples.count/factor)
downSampledAudioSamples.samplesPerPixel = waveformSample.samplesPerPixel * factor
downSampledAudioSamples.totalSamples = waveformSample.totalSamples
for i in 0..<waveformSample.samples.count/factor {
var total:CGFloat = 0
for j in 0..<factor {
total = total + waveformSample.samples[i*factor + j]
}
let averagedSample = total/CGFloat(factor)
downSampledAudioSamples.samples[i] = averagedSample
}
NSLog("Averaged samples")
}
You should use power of 2 size of your data
This will allow you to use just cheap bit shifts and simple resizing without any costly floating point operations or integer multiplicatin and division.
You should do half resolution mipmaps using previous mipmap
This will always create one sample from 2 samples of previous mipmap so no nested for loops or costly index computations
Do not mix floating and integer computations if you can avoid it
even if you have FPU the conversion between int and float is usually very slow. Ideally keep your audio data in integer format...
Here small C++/VCL example of these ideas:
//$$---- Form CPP ----
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "win_main.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
int xs,ys; // screen resolution
Graphics::TBitmap *bmp; // back buffer bitmap for rendering
//---------------------------------------------------------------------------
// input data
const int samples=1024;
int sample[samples];
// mipmas max 32 resolutions -> 2^32 samples input
int *mmdat0[32]={NULL}, // min
*mmdat1[32]={NULL}, // max
mmsiz[32]={0}; // resolution
//---------------------------------------------------------------------------
void generate_input(int *data,int size)
{
int i; float a,da;
da=10.0*M_PI/float(size-1);
for (a=0.0,i=0;i<size;i++,a+=da)
{
data[i]=float(100.0*sin(a))+Random(40)-20;
}
}
//---------------------------------------------------------------------------
void mipmap_free()
{
// free allocated mipmaps if needed
if (mmdat0[0]) delete[] mmdat0[0];
mmdat0[0]=NULL;
mmdat1[0]=NULL;
mmsiz[0]=0;
}
//---------------------------------------------------------------------------
void mipmap_compute(int *data,int size)
{
int i,j,k,n,N,a,a0,a1;
mipmap_free();
for (N=0,n=size;n;N+=n,n>>=1); // compute siz of all mipmas together
mmdat0[0]=new int[N+N]; // allocate space for all mipmas as single 1D array
mmdat1[0]=mmdat0[0]+N; // max will be at the other half
mmsiz [0]=size;
for (i=1,n=size;n;n>>=1,i++) // and just set pointers of sub mipmas
{
mmdat0[i]=mmdat0[i-1]+n; // to point at the the right place
mmdat1[i]=mmdat1[i-1]+n; // to point at the the right place
mmsiz [i]=mmsiz [i-1]>>1; // and set resolution as half
}
// copy first mipmap
n=size;
for (i=0;i<mmsiz[0];i++)
{
a=data[i];
mmdat0[0][i]=a;
mmdat1[0][i]=a;
}
// process all resolutions
for (k=1;mmsiz[k];k++)
{
// halve resolution
for (i=0,j=0;i<mmsiz[k];i++)
{
a=mmdat0[k-1][j]; a0=a;
a=mmdat1[k-1][j]; j++; a1=a;
a=mmdat0[k-1][j]; if (a0>a) a0=a;
a=mmdat1[k-1][j]; j++; if (a1<a) a1=a;
mmdat0[k][i]=a0;
mmdat1[k][i]=a1;
}
}
}
//---------------------------------------------------------------------------
void draw() // just render of my App
{
bmp->Canvas->Brush->Color=clWhite;
bmp->Canvas->FillRect(TRect(0,0,xs,ys));
int ix,x,y,y0=ys>>1;
// plot input data
bmp->Canvas->Pen->Color=clBlack;
x=0; y=y0-sample[x];
bmp->Canvas->MoveTo(x,y);
for (x=1;x<xs;x++)
{
y=y0-sample[x];
bmp->Canvas->LineTo(x,y);
}
// plot mipmap[ix] input data
ix=1;
bmp->Canvas->Pen->Color=clBlue;
x=0; y=y0-sample[x];
bmp->Canvas->MoveTo(x,y);
for (x=0;x<mmsiz[ix];x++)
{
y=y0-mmdat0[ix][x];
bmp->Canvas->LineTo(x,y);
y=y0-mmdat1[ix][x];
bmp->Canvas->LineTo(x,y);
}
Form1->Canvas->Draw(0,0,bmp);
// bmp->SaveToFile("out.bmp");
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner) // init of my app
{
// init backbuffer
bmp=new Graphics::TBitmap;
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
generate_input(sample,samples);
mipmap_compute(sample,samples);
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender) // not important just destructor of my App
{
mipmap_free();
delete bmp;
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender) // not important just resize event
{
xs=ClientWidth;
ys=ClientHeight;
bmp->Width=xs;
bmp->Height=ys;
draw();
}
//-------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender) // not important just repaint event
{
draw();
}
//---------------------------------------------------------------------------
Ignore the window VCL and rendering related stuff (I just wanted to pass whole source so you can see how it is used). The important is only the function mipmap_compute which converts your input data to 2 mipmaps. One is holding min values and the other max values.
The dynamic allocatins are not important the only important code chunk is marked with comment:
// process all resolutions
Where for each mipmap there is only single for loop without any expensive operations. If your platform is better with branchless code you can compute the min,max using in-build brunchless functions min,max. Something like:
// process all resolutions
for (k=1;mmsiz[k];k++)
{
// halve resolution
for (i=0,j=0;i<mmsiz[k];i++)
{
a=mmdat0[k-1][j]; a0=a;
a=mmdat1[k-1][j]; j++; a1=a;
a=mmdat0[k-1][j]; a0=min(a0,a);
a=mmdat1[k-1][j]; j++; a1=max(a1,a);
mmdat0[k][i]=a0;
mmdat1[k][i]=a1;
}
}
This can be further optimized simply by using pointer to actually selected mipmaps that will get rid of the [k] and [k-1] indexes allowing one less memory access per each element access.
// process all resolutions
for (k=1;mmsiz[k];k++)
{
// halve resolution
int *p0=mmdat0[k-1];
int *p1=mmdat1[k-1];
int *q0=mmdat0[k];
int *q1=mmdat1[k];
for (i=0,j=0;i<mmsiz[k];i++)
{
a=p0[j]; a0=a;
a=p1[j]; j++; a1=a;
a=p0[j]; a0=min(a0,a);
a=p1[j]; j++; a1=max(a1,a);
q0[i]=a0;
q1[i]=a1;
}
}
Now all you need is to bilinearly interpolate between 2 mipmaps to achieve your resolution, here small example for this:
// actually rescaled output
int out0[samples]; // min
int out1[samples]; // max
int outs=0; // size
void resize(int n) // compute out0[n],out1[n] from mipmaps
{
int i,*p0,*p1,*q0,*q1,pn,qn;
int pc,qc,pd,qd,pi,qi;
int a,a0,a1,b0,b1,bm,bd;
for (i=0;mmsiz[i]>=n;i++); // find smaller resolution
pn=mmsiz[i];
p0=mmdat0[i];
p1=mmdat1[i]; i--;
qn=mmsiz[i]; // bigger or equal resolution
q0=mmdat0[i];
q1=mmdat1[i]; outs=n;
pc=0; pi=0;
qc=0; qi=0;
bm=n-pn; bd=qn-pn;
for (i=0;i<n-1;i++)
{
// bilinear interpolation (3x linear)
a0=q0[qi];
a1=q0[qi+1];
b1=a0+(((a1-a0)*qc)/n);
a0=p0[pi];
a1=p0[pi+1];
b0=a0+(((a1-a0)*pc)/n);
out0[i]=b0+(((b1-b0)*bm)/bd); // /bd might be bitshift right by log2(bd)
// bilinear interpolation (3x linear)
a0=q1[qi];
a1=q1[qi+1];
b1=a0+(((a1-a0)*qc)/n);
a0=p1[pi];
a1=p1[pi+1];
b0=a0+(((a1-a0)*pc)/n);
out1[i]=b0+(((b1-b0)*bm)/bd); // /bd might be bitshift right by log2(bd)
// DDA increment indexes
pc+=pn; while (pc>=n){ pi++; pc-=n; } // pi = (i*pn)/n
qc+=qn; while (qc>=n){ qi++; qc-=n; } // qi = (i*qn)/n
}
out0[n-1]=q0[pn-1];
out1[n-1]=q1[pn-1];
}
Beware target size n must be less or equal to highest mipmap resolution...
This is how it looks (when I change the resolution manually with mouse wheel):
The choppyness is caused by GIF grabber ... the scaling is fast and seamless in real.
I had a similar problem, with 1.800.000 points of a waveform to draw on an 800 points screen. The zoom factor was 2000. If someone is interested, that's how I got awesome results :
Divide the very long list into 400 smaller lists
For each smaller list calculate the biggest difference, between the smaller and larger value in that list.
Plot 2 points per list, one at (offset + delta / 2) and one at (offset - delta / 2)
Results :
from 453932 points to 800 points
Python code :
numberOfSmallerList = 400
small_list_len = int(len(big_list) / numberOfSmallerList)
finalPointsToPlot = []
for i in range(0, len(big_list), small_list_len):
biggestDiff = max(big_list[i:i+small_list_len]) -
min(big_list[i:i+small_list_len])
finalPointsToPlot.append(biggestDiff/2 + 100)
finalPointsToPlot.append(100 - biggestDiff/2)
import matplotlib.pyplot as plt
plt.plot(finalPointsToPlot)
plt.show()
Related
I'm new to Processing and I need to make a program that, captured the main monitor, shows on the second screen the average color and makes a spiral using another color (perceptual dominant color) get by a function.
The problem is that the program is so slow (lag, 1FPS). I think it's because it has too many things to do everytime i do a screenshot, but I have no idea how to make it faster.
Also there could be many other problems, but the main one is that.
Thank you very much!
Here's the code:
import java.awt.Robot;
import java.awt.AWTException;
import java.awt.Rectangle;
import java.awt.color.ColorSpace;
PImage screenshot;
float a = 0;
int blockSize = 20;
int avg_c;
int per_c;
void setup() {
fullScreen(2); // 1920x1080
noStroke();
frame.removeNotify();
}
void draw() {
screenshot();
avg_c = extractColorFromImage(screenshot);
per_c = extractAverageColorFromImage(screenshot);
background(avg_c); // Average color
spiral();
}
void screenshot() {
try{
Robot robot_Screenshot = new Robot();
screenshot = new PImage(robot_Screenshot.createScreenCapture
(new Rectangle(0, 0, displayWidth, displayHeight)));
}
catch (AWTException e){ }
frame.setLocation(displayWidth/2, 0);
}
void spiral() {
fill (per_c);
for (int i = blockSize; i < width; i += blockSize*2)
{
ellipse(i, height/2+sin(a+i)*100, blockSize+cos(a+i)*5, blockSize+cos(a+i)*5);
a += 0.001;
}
}
color extractColorFromImage(PImage screenshot) { // Get average color
screenshot.loadPixels();
int r = 0, g = 0, b = 0;
for (int i = 0; i < screenshot.pixels.length; i++) {
color c = screenshot.pixels[i];
r += c>>16&0xFF;
g += c>>8&0xFF;
b += c&0xFF;
}
r /= screenshot.pixels.length; g /= screenshot.pixels.length; b /= screenshot.pixels.length;
return color(r, g, b);
}
color extractAverageColorFromImage(PImage screenshot) { // Get lab average color (perceptual)
float[] average = new float[3];
CIELab lab = new CIELab();
int numPixels = screenshot.pixels.length;
for (int i = 0; i < numPixels; i++) {
color rgb = screenshot.pixels[i];
float[] labValues = lab.fromRGB(new float[]{red(rgb),green(rgb),blue(rgb)});
average[0] += labValues[0];
average[1] += labValues[1];
average[2] += labValues[2];
}
average[0] /= numPixels;
average[1] /= numPixels;
average[2] /= numPixels;
float[] rgb = lab.toRGB(average);
return color(rgb[0] * 255,rgb[1] * 255, rgb[2] * 255);
}
public class CIELab extends ColorSpace {
#Override
public float[] fromCIEXYZ(float[] colorvalue) {
double l = f(colorvalue[1]);
double L = 116.0 * l - 16.0;
double a = 500.0 * (f(colorvalue[0]) - l);
double b = 200.0 * (l - f(colorvalue[2]));
return new float[] {(float) L, (float) a, (float) b};
}
#Override
public float[] fromRGB(float[] rgbvalue) {
float[] xyz = CIEXYZ.fromRGB(rgbvalue);
return fromCIEXYZ(xyz);
}
#Override
public float getMaxValue(int component) {
return 128f;
}
#Override
public float getMinValue(int component) {
return (component == 0)? 0f: -128f;
}
#Override
public String getName(int idx) {
return String.valueOf("Lab".charAt(idx));
}
#Override
public float[] toCIEXYZ(float[] colorvalue) {
double i = (colorvalue[0] + 16.0) * (1.0 / 116.0);
double X = fInv(i + colorvalue[1] * (1.0 / 500.0));
double Y = fInv(i);
double Z = fInv(i - colorvalue[2] * (1.0 / 200.0));
return new float[] {(float) X, (float) Y, (float) Z};
}
#Override
public float[] toRGB(float[] colorvalue) {
float[] xyz = toCIEXYZ(colorvalue);
return CIEXYZ.toRGB(xyz);
}
CIELab() {
super(ColorSpace.TYPE_Lab, 3);
}
private double f(double x) {
if (x > 216.0 / 24389.0) {
return Math.cbrt(x);
} else {
return (841.0 / 108.0) * x + N;
}
}
private double fInv(double x) {
if (x > 6.0 / 29.0) {
return x*x*x;
} else {
return (108.0 / 841.0) * (x - N);
}
}
private final ColorSpace CIEXYZ =
ColorSpace.getInstance(ColorSpace.CS_CIEXYZ);
private final double N = 4.0 / 29.0;
}
There's lots that can be done, even beyond what's already been mentioned.
Iteration & Threading
After taking the screenshot, immediately iterate over every 1/N pixels (perhaps every 4 or 8) of the buffered image. Then, during this iteration, calculate the LAB value for each pixel (as you have each pixel channel directly available), and meanwhile increment the running total of each RGB channel.
This saves us from iterating over the same pixels twice and avoids unncessary conversions (BufferedImage → PImage; and composing then decomposing pixel channels from PImage pixels).
Likewise, we avoid Processing's expensive resize() call (as suggested in another answer), which is not something we want to call every frame (even though it does speed the program up, it's not an efficient method).
Now, on top of iteration change, we can wrap the iteration in a Callable to easily run the workload across multiple system threads concurrently (after all, pixel iteration is embarrassingly parallel); the example below does this with 2 threads, each screenshotting and processing half of the display's pixels.
Optimise RGB→XYZ→LAB conversion
We're not so concerned about the backwards conversion since that's only done for one value per frame
It looks like you've implemented XYZ→LAB yourself and are using the RGB→XYZ converter from java.awt.color.
As has been identified, the forward conversion XYZ→LAB uses a cbrt() which is as a bottleneck. I also imagine that the RGB→XYZ implementation makes 3 calls to Math.Pow(x, 2.4) — 3 non-integer exponents per pixel adds considerably to the computation. The solution is faster math...
Jafama
Jafama is a drop-in java.math replacement -- simply import the library and replace any Math.__() calls with FastMath.__() for a free speedup (you could go even further by trading Jafama's E-15 precision with less accurate and even faster dedicated LUT-based classes).
So at the very least, swap out Math.cbrt() for FastMath.cbrt(). Then consider implementing RGB→XYZ yourself (example), again using Jafama in place of java.math.
You may even find that for such a project, converting to XYZ only is a sufficient color space to work with to overcome the well known weaknesses with RGB (and therefore save yourself from the XYZ→LAB conversion).
Cache LAB Calculation
Unless most pixels are changing every frame, then consider caching the LAB value for every pixel, recalculating it only when the pixel has changed between the current the previous frames. The tradeoff here is the overhead from checking every pixel against its previous value, versus how much calculation positive checks will save. Given that the LAB calculation is much more expensive it's very worthwhile here. The example below uses this technique.
Screen Capture
No matter how well optimised the rest of the program is, a considerable bottleneck is the AWT Robot's createScreenCapture(). It will struggles to go past 30FPS on large enough displays. I can't offer any exact advice but it's worth looking at other screen capture methods in Java.
Reworked code with iteration changes & threading
This code implements what has discussed above minus any changes to the LAB calculation.
float a = 0;
int blockSize = 20;
int avg_c;
int per_c;
java.util.concurrent.ExecutorService threadPool = java.util.concurrent.Executors.newFixedThreadPool(4);
List<java.util.concurrent.Callable<Boolean>> taskList;
float[] averageLAB;
int totalR = 0, totalG = 0, totalB = 0;
CIELab lab = new CIELab();
final int pixelStride = 8; // look at every 8th pixel
void setup() {
size(800, 800, FX2D);
noStroke();
frame.removeNotify();
taskList = new ArrayList<java.util.concurrent.Callable<Boolean>>();
Compute thread1 = new Compute(0, 0, width, height/2);
Compute thread2 = new Compute(0, height/2, width, height/2);
taskList.add(thread1);
taskList.add(thread2);
}
void draw() {
totalR = 0; // re init
totalG = 0; // re init
totalB = 0; // re init
averageLAB = new float[3]; // re init
final int numPixels = (width*height)/pixelStride;
try {
threadPool.invokeAll(taskList); // run threads now and block until completion of all
}
catch (Exception e) {
e.printStackTrace();
}
// calculate average LAB
averageLAB[0]/=numPixels;
averageLAB[1]/=numPixels;
averageLAB[2]/=numPixels;
final float[] rgb = lab.toRGB(averageLAB);
per_c = color(rgb[0] * 255, rgb[1] * 255, rgb[2] * 255);
// calculate average RGB
totalR/=numPixels;
totalG/=numPixels;
totalB/=numPixels;
avg_c = color(totalR, totalG, totalB);
background(avg_c); // Average color
spiral();
fill(255, 0, 0);
text(frameRate, 10, 20);
}
class Compute implements java.util.concurrent.Callable<Boolean> {
private final Rectangle screenRegion;
private Robot robot_Screenshot;
private final int[] previousRGB;
private float[][] previousLAB;
Compute(int x, int y, int w, int h) {
screenRegion = new Rectangle(x, y, w, h);
previousRGB = new int[w*h];
previousLAB = new float[w*h][3];
try {
robot_Screenshot = new Robot();
}
catch (AWTException e1) {
e1.printStackTrace();
}
}
#Override
public Boolean call() {
BufferedImage rawScreenshot = robot_Screenshot.createScreenCapture(screenRegion);
int[] ssPixels = new int[rawScreenshot.getWidth()*rawScreenshot.getHeight()]; // screenshot pixels
rawScreenshot.getRGB(0, 0, rawScreenshot.getWidth(), rawScreenshot.getHeight(), ssPixels, 0, rawScreenshot.getWidth()); // copy buffer to int[] array
for (int pixel = 0; pixel < ssPixels.length; pixel+=pixelStride) {
// get invididual colour channels
final int pixelColor = ssPixels[pixel];
final int R = pixelColor >> 16 & 0xFF;
final int G = pixelColor >> 8 & 0xFF;
final int B = pixelColor & 0xFF;
if (pixelColor != previousRGB[pixel]) { // if pixel has changed recalculate LAB value
float[] labValues = lab.fromRGB(new float[]{R/255f, G/255f, B/255f}); // note that I've fixed this; beforehand you were missing the /255, so it was always white.
previousLAB[pixel] = labValues;
}
averageLAB[0] += previousLAB[pixel][0];
averageLAB[1] += previousLAB[pixel][1];
averageLAB[2] += previousLAB[pixel][2];
totalR+=R;
totalG+=G;
totalB+=B;
previousRGB[pixel] = pixelColor; // cache last result
}
return true;
}
}
800x800px; pixelStride = 4; fairly static screen background
Yeesh, about 1 FPS on my machine:
To optimize code can be really hard, so instead of reading everything looking for stuff to improve, I started by testing where you were losing so much processing power. The answer was at this line:
per_c = extractAverageColorFromImage(screenshot);
The extractAverageColorFromImage method is well written, but it underestimate the amount of work it has to do. There is a quadratic relationship between the size of a screen and the number of pixels in this screen, so the bigger the screen the worst the situation. And this method is processing every pixel of the screenshot all the time, several time per screenshot.
This is a lot of work for an average color. Now, if there was a way to cut some corners... maybe a smaller screen, or a smaller screenshot... oh! there is! Let's resize the screenshot. After all, we don't need to go into such details as individual pixels for an average. In the screenshot method, add this line:
void screenshot() {
try {
Robot robot_Screenshot = new Robot();
screenshot = new PImage(robot_Screenshot.createScreenCapture(new Rectangle(0, 0, displayWidth, displayHeight)));
// ADD THE NEXT LINE
screenshot.resize(width/4, height/4);
}
catch (AWTException e) {
}
frame.setLocation(displayWidth/2, 0);
}
I divided the workload by 4, but I encourage you to tweak this number until you have the fastest satisfying result you can. This is just a proof of concept:
As you can see, resizing the screenshot and making it 4x smaller gives me 10x more speed. That's not a miracle, but it's much better, and I can't see a difference in the end result - but about that part, you'll have to use your own judgement, as you are the one who knows what your project is about. Hope it'll help!
Have fun!
Unfortunately I can't provide a detailed answer like laancelot (+1), but hopefully I can provide a few tips:
Resizing the image is definitely a good direction. Bare in mind you can also skip a number of pixels instead of incrementing every single pixel. (if you handle the pixel indices correctly, you can get a similar effect to resize without calling resize, though that won't save you a lot CPU time)
Don't create a new Robot instance multiple times a second. Create it once in setup and re-use it. (This is more of a good habit to get into)
Use a CPU profiler, such as the one in VisualVM to see what exactly is slow and aim to optimise the slowest stuff first.
point 1 example:
for (int i = 0; i < numPixels; i+= 100)
point 2 example:
Robot robot_Screenshot;
...
void setup() {
fullScreen(2); // 1920x1080
noStroke();
frame.removeNotify();
try{
robot_Screenshot = new Robot();
}catch(AWTException e){
println("error setting up screenshot Robot instance");
e.printStackTrace();
}
}
...
void screenshot() {
screenshot = new PImage(robot_Screenshot.createScreenCapture
(new Rectangle(0, 0, displayWidth, displayHeight)));
frame.setLocation(displayWidth/2, 0);
}
point 3 example:
Notice the slowest bit are actually AWT's fromRGB and Math.cbrt()
I'd suggest finding another alternative RGB -> XYZ -> L*a*b* conversion method that is simpler (mainly functions, less classes, with AWT or other dependencies) and hopefully faster.
So I am building a voxel-based physics simulator in which voxels can be destroyed. Every voxelized object has a kind of "center voxel" to describe it, ill call it "peace A". All voxels are simulated as one until they are separated from "peace A" or another voxel attached to it, then they(and/or other voxels connected to that voxel) get put into a new object with its own simulated physics. And here lies my problem, How Do I check if the voxel is still attached? in the most efficient way possible? pathfinding sounds like it would slow down allot when I scale up but happy to try and figure that out if its the best option. and updating all voxels at once when one voxel is destroyed doesn't sound too good either. Any of you geniuses have any ideas?
here are some drawings for clarity(ps please excuse my bad mouse-handwriting)
first image, with voxels still connected:
second image, when the voxels separate:
Segmentation/labeling is the way (similar to raster A* and flood fill).
for each voxel add a flag variable/space
this flag will be used to tell if voxel is used or not ... and can be used latter as a temp value...
clear all flags to zero and set actual object ID=1.
pick first voxel with flag=0
flood fill it with actual object ID
so using 6 or 26 connectivity (analogy to 4 or 8 connectivity in 2D) flood fill the voxel flags with ID.
increment ID and goto #3
stop when there are no more voxels with flag=0
After this the flag holds the sub object ID your original object is split into and ID holds the count of your new objects+1.
[edit1] C++/VCL/OpenGL example
//---------------------------------------------------------------------------
#include <vcl.h>
#pragma hdrstop
#include "Unit1.h"
#include "gl_simple.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---------------------------------------------------------------------------
const int n=16; // voxel map resolution
bool map[n][n][n]; // voxel map
int flg[n][n][n]; // (flag)
int pal[]= // 0xAABBGGRR
{
0x007F0000,
0x00007F00,
0x0000007F,
0x00007F7F,
0x007F007F,
0x007F7F00,
0x00FF0000,
0x0000FF00,
0x000000FF,
0x0000FFFF,
0x00FF00FF,
0x00FFFF00,
};
const int pals=sizeof(pal)/sizeof(pals);
//---------------------------------------------------------------------------
void fill(int x,int y,int z,int id)
{
// inside map check
if ((x<0)||(x>=n)) return;
if ((y<0)||(y>=n)) return;
if ((z<0)||(z>=n)) return;
// is it active voxel?
if (!map[x][y][z]) return;
// already filled with the same id?
if (flg[x][y][z]==id) return;
// set flag
flg[x][y][z]=id;
// fill neighbors
fill(x-1,y,z,id);
fill(x+1,y,z,id);
fill(x,y-1,z,id);
fill(x,y+1,z,id);
fill(x,y,z-1,id);
fill(x,y,z+1,id);
fill(x-1,y-1,z,id);
fill(x-1,y+1,z,id);
fill(x+1,y-1,z,id);
fill(x+1,y+1,z,id);
fill(x-1,y,z-1,id);
fill(x-1,y,z+1,id);
fill(x+1,y,z-1,id);
fill(x+1,y,z+1,id);
fill(x,y-1,z-1,id);
fill(x,y-1,z+1,id);
fill(x,y+1,z-1,id);
fill(x,y+1,z+1,id);
fill(x-1,y-1,z-1,id);
fill(x-1,y-1,z+1,id);
fill(x-1,y+1,z-1,id);
fill(x-1,y+1,z+1,id);
fill(x+1,y-1,z-1,id);
fill(x+1,y-1,z+1,id);
fill(x+1,y+1,z-1,id);
fill(x+1,y+1,z+1,id);
}
//---------------------------------------------------------------------------
void recolor()
{
int x,y,z,id;
// clear all flags to zero and set actual object ID=1
id=1;
for (x=0;x<n;x++)
for (y=0;y<n;y++)
for (z=0;z<n;z++)
flg[x][y][z]=0;
// pick first voxel with flag=0
for (x=0;x<n;x++)
for (y=0;y<n;y++)
for (z=0;z<n;z++)
if (map[x][y][z])
if (flg[x][y][z]==0)
{
// flood fill it with actual object ID
fill(x,y,z,id);
// increment ID and goto #3
id++;
}
}
//---------------------------------------------------------------------------
void TForm1::draw()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_COLOR_MATERIAL);
// center the view around map[][][]
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0,0.0,-80.0);
glRotatef( 15.0,1.0,0.0,0.0);
glTranslatef(-n,-n,-n);
// render map[][][] as cubes (very slow old api version for simplicity)
int x,y,z,i;
for (x=0;x<n;x++)
for (y=0;y<n;y++)
for (z=0;z<n;z++)
if (map[x][y][z])
{
glPushMatrix();
glTranslatef(x+x,y+y,z+z);
glColor4ubv((BYTE*)&(pal[flg[x][y][z]%pals]));
glBegin(GL_QUADS);
for (i=0;i<3*24;i+=3)
{
glNormal3fv(vao_nor+i);
glVertex3fv(vao_pos+i);
}
glEnd();
glPopMatrix();
}
glFlush();
SwapBuffers(hdc);
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
{
gl_init(Handle);
// init map[][][]
int x,y,z,i0=2,i1=n-i0-1,xx,yy,zz;
for (x=0;x<n;x++)
for (y=0;y<n;y++)
for (z=0;z<n;z++)
{
// clear map
map[x][y][z]=false;
// cube edges
if (((x>=i0)&&(x<=i1))&&((y==i0)||(y==i1))&&((z==i0)||(z==i1))) map[x][y][z]=true;
if (((y>=i0)&&(y<=i1))&&((x==i0)||(x==i1))&&((z==i0)||(z==i1))) map[x][y][z]=true;
if (((z>=i0)&&(z<=i1))&&((x==i0)||(x==i1))&&((y==i0)||(y==i1))) map[x][y][z]=true;
// ball
xx=x-8; xx*=xx;
yy=y-8; yy*=yy;
zz=z-8; zz*=zz;
if (xx+yy+zz<=16) map[x][y][z]=true;
// X
if ((y==i0)&&(x== z )&&(x>=4)&&(x<12)) map[x][y][z]=true;
if ((y==i0)&&(x==n-z-1)&&(x>=4)&&(x<12)) map[x][y][z]=true;
}
recolor();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
gl_exit();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
{
gl_resize(ClientWidth,ClientHeight);
draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
draw();
}
//---------------------------------------------------------------------------
You can ignore the VCL stuff and also the OpenGL rendering The only important stuff is on the top of the code up to (including) function void recolor(); The map holds the individual voxels of our input map (hardcoded in my apps constructor with few objects). The flg array holds the id of object the corresponding voxel was labeled with (enumerated) and its used later for coloring each object with different color from the palette pal[]. To keep this as simple as I could I did not do any optimization (the fill and render are very slow because of that and can be optimized a lot).
Here preview (after calling the recolor()):
As you can see all the voxels connected share the same color which means they have the same id number in flg array (belong to same object) so the algo and code works as expected.
In case you want to use this the gl_simple.h is in here:
complete GL+GLSL+VAO/VBO C++ example
so you just need to port the VCL events into your environment style...
Pick a random, not connected, object
Recursively get the up/down/left/right object till there is no left (always checking if the object is already connected)
If there are no objects left in the scene that are not connected, stop
Go to Step 1
I am trying to draw a koch curve (line) with basic trigonometric conversions.
I couldn't figure out what is the correct angle for newly generated peak point.
Here is my logic:
Given the start point of the line, angle of the line and the length for every segment, create this scheme.
After creating the schemem, treat every sub-lines starting point as new koch curves and repeat the steps.
I suspect the problem is at point 'pt' angle value.
/* Angle for turning downwards after the peak point */
float angle = 2*PI - PI/6;
void koch(Point2D start, float alpha, int d, int noi) {
Point2D p1 = new Point2D(start.x + d*cos(alpha), start.y + d*sin(alpha));
Point2D pt = new Point2D(start.x + d*sqrt(3)*cos(alpha+PI/6), start.y + d*sqrt(3)*sin(alpha+PI/6));
Point2D p2 = new Point2D(start.x + 2*d*cos(alpha), start.y + 2*d*sin(alpha));
Point2D p3 = new Point2D(start.x + 3*d*cos(alpha), start.y + 3*d*sin(alpha));
line(start.x, start.y, p1.x, p1.y);
line(p1.x, p1.y, pt.x, pt.y);
line(pt.x, pt.y, p2.x, p2.y);
line(p2.x, p2.y, p3.x, p3.y);
if(noi != 0) {
koch(start, alpha, d/3, noi-1);
koch(p1, alpha + PI/3, d/3, noi-1);
koch(pt, angle, d/3, noi-1); //Problem is here i suspect
koch(p2, alpha, d/3, noi-1);
}
return;
}
Calling this function with alpha being PI/6 and noi is 2 i get:
I want to get something like:
I was reluctant to answer as I do not code in Unity but as your question after few days still did not have any valid answer here is mine:
I do not see what I would expect in turtle graphics code. See:
Smooth Hilbert curves
and look for turtle_draw in the code. This is what I would expect:
initial string
turtle fractals are represented by a string holding turtle commands. Usual commands are:
f go forward by predetermined step
l turn left (CCW) by predetermined angle in your case 60 deg
r turn right (CW) by predetermined angle in your case 60 deg
For Koch snowflake you should start with triangle so "frrfrrf" the Koch curve starts with single line "f" instead.
iteration/recursion
for each level of iteration/recursion of the fractal you should replace each straight line command f by the triangular bump feature "flfrrflf" (make sure that last direction matches original f command). As the triangle tripled in size you should divide size of the f movement by 3 to stay at the same scale ...
render the string
simply process all the characters of the resulting string and render the lines. There are two approaches how to handle the rotations. Either remember direction angle and inc/dec it by rotation angle and compute the lines as polar coordinates increments (see the code below), or have direction in form of a 2D (or higher dimension) vector and apply rotation formula on it (see the link above).
Here small C++/VCL example of the Koch snowflake:
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "win_main.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
Graphics::TBitmap *bmp=new Graphics::TBitmap;
int xs,xs2,ys,ys2,n=0;
AnsiString str;
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
void turtle(TCanvas *scr,float x,float y,float a,float dl,AnsiString s)
{
int i;
char c;
float da=60.0*M_PI/180.0;
scr->MoveTo(x,y);
for (i=1;i<=s.Length();i++)
{
c=s[i];
if (c=='f')
{
x+=dl*cos(a);
y+=dl*sin(a);
scr->LineTo(x,y);
}
if (c=='l') a-=da;
if (c=='r') a+=da;
}
}
//---------------------------------------------------------------------------
AnsiString replace(AnsiString s0,char find,AnsiString replace)
{
int i;
char c;
AnsiString s="";
for (i=1;i<=s0.Length();i++)
{
c=s0[i];
if (c==find) s+=replace;
else s+=c;
}
return s;
}
//---------------------------------------------------------------------------
void draw()
{
str="frrfrrf"; // initial string
for (int i=0;i<n;i++) str=replace(str,'f',"flfrrflf"); // n times replacement
bmp->Canvas->Brush->Color=0x00000000; // just clear screen ...
bmp->Canvas->FillRect(TRect(0,0,xs,ys));
bmp->Canvas->Pen ->Color=0x00FFFFFF; // and some info text
bmp->Canvas->Font ->Color=0x00FFFFFF;
bmp->Canvas->TextOutA(5,5,AnsiString().sprintf("n:%i",n));
float nn=pow(3,n),a;
a=xs; if (a>ys) a=ys; a=0.75*a/nn;
turtle(bmp->Canvas,xs2-(0.5*nn*a),ys2-(0.33*nn*a),0.0,a,str); // render fractal
Form1->Canvas->Draw(0,0,bmp); // swap buffers to avoid flickering
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner) : TForm(Owner)
{
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
delete bmp;
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
{
bmp->Width=ClientWidth;
bmp->Height=ClientHeight;
xs=ClientWidth;
ys=ClientHeight;
xs2=xs>>1;
ys2=ys>>1;
draw();
}
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseWheel(TObject *Sender, TShiftState Shift, int WheelDelta, TPoint &MousePos, bool &Handled)
{
if (WheelDelta<0) if (n<8) n++;
if (WheelDelta>0) if (n>0) n--;
Handled=true;
draw();
}
//---------------------------------------------------------------------------
Ignore the VCL stuff. The important thing here are:
void turtle(TCanvas *scr,float x,float y,float a,float dl,AnsiString s)
which renders the string s on canvas scr (using VCL encapsulated GDI) where x,y is start position a is starting direction angle [rad] and dl is size of line.
AnsiString replace(AnsiString s0,char find,AnsiString replace)
which replace any find characters in s0 by replace pattern returned as a new string.
void draw()
which computes and render the fractal
Here few screenshots:
Now when I look at your code (just a quick look as I am too lazy to analyze your code in depth) you are generating points directly and without the incremental steps needed. Instead you are sort of hard-coding the triangular bump feature which will not work properly for next level of fractal recursion without clever indexing techniques. In your case it stop working properly even in the same level of recursion (on the next line because its oriented differently and you are not rotating but hard-coding the feature instead).
As far as I know basic Koch curve starts with a line, divides the length of step into three and puts a equilateral triangle in the middle:
There are different variations out there if you are interested in, but for basic Koch curve you can start with either two of p1, p2, p3, pt and start points that you drawn and calculate the rest respectively. In each iteration, you can go one level deeper.
Given a number of curves,include line segments and circular arcs, how to compute the total OBB of all curves?
It seems that the union of each OBB of the individual curves does not right, it's not the minimal coverage.
Check this picture, how to compute the red box?
you should also add the input in vector form so we can test on your data ... I would approach like this:
find center of axis aligned bbox O(n)
compute max distance in each angle O(n)
just create table for enough m angles (like 5 deg step so m = 360/5) where for each angle section you remember max distant point distance only.
compute max perpendicular distance for each rotation O(m^2)
so for each angle section compute value that is:
value[actual_section] = max(distance[i]*cos(section_angle[i]-section_angle[actual_section]))
where i covers +/- 90 deg around actual section angle so now you got max perpendicular distances for each angle...
pick best solution O(m)
so look all rotations from 0 to 90 degrees and remember the one that has minimal OBB area. Just to be sure the OBB is aligned to section angle and size of axises is the value of that angle and all the 90 deg increments... around center
This will not result in optimal solution but very close to it. To improve precision you can use more angle sections or even recursively search around found solution with smaller and smaller angle step (no need to compute the other angle areas after first run.
[Edit1]
I tried to code this in C++ as proof of concept and use your image (handled as set of points) as input so here the result so you got something to compare to (for debugging purposes)
gray are detected points from your image, green rectangle is axis aligned BBox the red rectangle is found OBBox. The aqua points are found max distance per angle interval and green dots are max perpendicular distance for +/-90deg neighbor angle intervals. I used 400 angles and as you can see the result is pretty close ... 360/400 deg accuracy so this approach works well ...
Here C++ source:
//---------------------------------------------------------------------------
struct _pnt2D
{
double x,y;
// inline
_pnt2D() {}
_pnt2D(_pnt2D& a) { *this=a; }
~_pnt2D() {}
_pnt2D* operator = (const _pnt2D *a) { *this=*a; return this; }
//_pnt2D* operator = (const _pnt2D &a) { ...copy... return this; }
};
struct _ang
{
double ang; // center angle of section
double dis; // max distance of ang section
double pdis; // max perpendicular distance of +/-90deg section
// inline
_ang() {}
_ang(_ang& a) { *this=a; }
~_ang() {}
_ang* operator = (const _ang *a) { *this=*a; return this; }
//_ang* operator = (const _ang &a) { ...copy... return this; }
};
const int angs=400; // must be divisible by 4
const int angs4=angs>>2;
const double dang=2.0*M_PI/double(angs);
const double dang2=0.5*dang;
_ang ang[angs];
List<_pnt2D> pnt;
_pnt2D bbox[2],obb[4],center;
//---------------------------------------------------------------------------
void compute_OBB()
{
_pnt2D ppp[4];
int i,j; double a,b,dx,dy;
_ang *aa,*bb;
_pnt2D p,*pp; DWORD *q;
// convert bmp -> pnt[]
pnt.num=0;
Graphics::TBitmap *bmp=new Graphics::TBitmap;
bmp->LoadFromFile("in.bmp");
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
for (p.y=0;p.y<bmp->Height;p.y++)
for (q=(DWORD*)bmp->ScanLine[int(p.y)],p.x=0;p.x<bmp->Width;p.x++)
if ((q[int(p.x)]&255)<20)
pnt.add(p);
delete bmp;
// axis aligned bbox
bbox[0]=pnt[0];
bbox[1]=pnt[0];
for (pp=pnt.dat,i=0;i<pnt.num;i++,pp++)
{
if (bbox[0].x>pp->x) bbox[0].x=pp->x;
if (bbox[0].y>pp->y) bbox[0].y=pp->y;
if (bbox[1].x<pp->x) bbox[1].x=pp->x;
if (bbox[1].y<pp->y) bbox[1].y=pp->y;
}
center.x=(bbox[0].x+bbox[1].x)*0.5;
center.y=(bbox[0].y+bbox[1].y)*0.5;
// ang[] table init
for (aa=ang,a=0.0,i=0;i<angs;i++,aa++,a+=dang)
{
aa->ang=a;
aa-> dis=0.0;
aa->pdis=0.0;
}
// ang[].dis
for (pp=pnt.dat,i=0;i<pnt.num;i++,pp++)
{
dx=pp->x-center.x;
dy=pp->y-center.y;
a=atan2(dy,dx);
j=floor((a/dang)+0.5); if (j<0) j+=angs; j%=angs;
a=(dx*dx)+(dy*dy);
if (ang[j].dis<a) ang[j].dis=a;
}
for (aa=ang,i=0;i<angs;i++,aa++) aa->dis=sqrt(aa->dis);
// ang[].adis
for (aa=ang,i=0;i<angs;i++,aa++)
for (bb=ang,j=0;j<angs;j++,bb++)
{
a=fabs(aa->ang-bb->ang);
if (a>M_PI) a=(2.0*M_PI)-a;
if (a<=0.5*M_PI)
{
a=bb->dis*cos(a);
if (aa->pdis<a) aa->pdis=a;
}
}
// find best oriented bbox (the best angle is ang[j].ang)
for (b=0,j=0,i=0;i<angs;i++)
{
dx =ang[i].pdis; i+=angs4; i%=angs;
dy =ang[i].pdis; i+=angs4; i%=angs;
dx+=ang[i].pdis; i+=angs4; i%=angs;
dy+=ang[i].pdis; i+=angs4; i%=angs;
a=dx*dy; if ((b>a)||(i==0)) { b=a; j=i; }
}
// compute endpoints for OBB
i=j;
ppp[0].x=ang[i].pdis*cos(ang[i].ang);
ppp[0].y=ang[i].pdis*sin(ang[i].ang); i+=angs4; i%=angs;
ppp[1].x=ang[i].pdis*cos(ang[i].ang);
ppp[1].y=ang[i].pdis*sin(ang[i].ang); i+=angs4; i%=angs;
ppp[2].x=ang[i].pdis*cos(ang[i].ang);
ppp[2].y=ang[i].pdis*sin(ang[i].ang); i+=angs4; i%=angs;
ppp[3].x=ang[i].pdis*cos(ang[i].ang);
ppp[3].y=ang[i].pdis*sin(ang[i].ang); i+=angs4; i%=angs;
obb[0].x=center.x+ppp[0].x+ppp[3].x;
obb[0].y=center.y+ppp[0].y+ppp[3].y;
obb[1].x=center.x+ppp[1].x+ppp[0].x;
obb[1].y=center.y+ppp[1].y+ppp[0].y;
obb[2].x=center.x+ppp[2].x+ppp[1].x;
obb[2].y=center.y+ppp[2].y+ppp[1].y;
obb[3].x=center.x+ppp[3].x+ppp[2].x;
obb[3].y=center.y+ppp[3].y+ppp[2].y;
}
//---------------------------------------------------------------------------
I used mine dynamic list template so:
List<double> xxx; is the same as double xxx[];
xxx.add(5); adds 5 to end of the list
xxx[7] access array element (safe)
xxx.dat[7] access array element (unsafe but fast direct access)
xxx.num is the actual used size of the array
xxx.reset() clears the array and set xxx.num=0
xxx.allocate(100) preallocate space for 100 items
You can ignore the // convert bmp -> pnt[] VCL part as you got your data already.
I recommend to also take a look at my:
3D OBB approximation
I am trying to procedurally generate some rivers.
I have a flat (no concept of elevation) square grid as base and want to draw a branching structure on it like shown in the image.
Can you share the steps that one may use to get that done?
I am not looking for the fastest implementation as there is no real time generation, but the simpler implementation will be prefered. Lua is my language but anything will do.
Few more things:
The shape should be generated algorithmic ally.
The shape should be
controllable using a seed value.
I think generating rivers is a backward approach as you would need to tweak a lot of things according to their shape later on which will be hard. I would instead create random terrain height map and extract features from it (as in the real world) which is much easier and closer to reality. In the final map you ignore the height and use flat one (if you really want a flat map). Here are few things you can extract from height map:
Rivers and lakes
by seeding random high altitude point and following it downhill to sea level or edge of map.
vegetation or ground
from slope and altitude you can determine if ground is sand,dirt,rock. If there are trees, bushes, grass or whatever.
Here look at this QA: random island generator
and some river overview:
The way you tweak the terrain generation will affect also the river shapes (no need to generate just islands).
The Seeds are working also for this approach.
[Edit1] promised C++ code
This basically generate random height map and then seed and downhill follow the rivers (lakes are generated automatically if the terrain block downhill watter flow). The terrain type is also determined from slope and altitude.
//---------------------------------------------------------------------------
picture pic;
//---------------------------------------------------------------------------
void map_random(int _xs,int _ys)
{
// config
int h0=-1000,h1=3000; // [m] terrain elevation range
int h_water= 0; // [m] sea level
int h_sand=15; // [m] sand level
int h_evergreen=1500; // [m] evergreen level
int h_snow=2000; // [m] snow level
int h_rock=1800; // [m] mountine rock level
float a_rock=60.0; // [deg] mountine rock slope
float d_pixel=35.0; // [m] pixel size
int d_river_w=5; // [pixel] river max width
int d_river_l=150; // [pixel] river base length per width increase
bool _island=true;
// types
enum _cover_enum
{
_cover_none=0,
_cover_water, // sea
_cover_snow,
_covers,
_cover_shift=0,
_cover_mask=15,
};
DWORD _cover[_covers]=
{
// RRGGBB
0x00000000, // none
0x00003080, // watter (sea)
0x00EEEEEE, // snow
};
enum _terrain_enum
{
_terrain_dirt=0,
_terrain_sand,
_terrain_rock,
_terrain_water, // streams,rivers,lakes
_terrain_temp, // temp
_terrains,
_terrain_shift=4,
_terrain_mask=15,
};
DWORD _terrain[_terrains]=
{
// RRGGBB
0x00301510, // dirt
0x00EEC49A, // sand
0x006F6F6F, // rock
0x00006080, // water (streams,rivers,lakes)
0x00006080, // temp
};
enum _flora_enum
{
_flora_none=0,
_flora_grass,
_flora_hardwood,
_flora_evergreen,
_flora_deadwood,
_floras,
_flora_shift=8,
_flora_mask=15,
};
DWORD _flora[_floras]=
{
// RRGGBB
0x00000000, // none
0x007F7F3F, // grass
0x001FFF1F, // hardwood
0x00007F00, // evergreen
0x007F3F1F, // deadwood
};
// variables
float a,b,da; int c,t,f;
int x,y,z,xx,yy,mxs,mys,dx,dy,dx2,dy2,r,r2,ix,l;
int xh1,yh1; // topest hill position
int **ter=NULL,**typ=NULL;
Randomize();
// align resolution to power of 2
for (mxs=1;mxs+1<_xs;mxs<<=1); if (mxs<3) mxs=3;
for (mys=1;mys+1<_ys;mys<<=1); if (mys<3) mys=3;
ter=new int*[mys+1]; for (y=0;y<=mys;y++) ter[y]=new int[mxs+1];
typ=new int*[mys+1]; for (y=0;y<=mys;y++) typ[y]=new int[mxs+1];
// [Terrain]
for (;;)
{
// diamond & square random height map -> ter[][]
dx=mxs; dx2=dx>>1; r=(mxs+mys)<<1; // init step,half step and randomness
dy=mys; dy2=dy>>1; r2=r>>1;
// set corners values
if (_island)
{
t=-r2;
ter[ 0][ 0]=t;
ter[ 0][mxs]=t;
ter[mys][ 0]=t;
ter[mys][mxs]=t;
ter[dy2][dx2]=r+r; // top of central hill
}
else{
ter[ 0][ 0]=Random(r);
ter[ 0][mxs]=Random(r);
ter[mys][ 0]=Random(r);
ter[mys][mxs]=Random(r);
}
for (;dx2|dy2;dx=dx2,dx2>>=1,dy=dy2,dy2>>=1) // subdivide step until full image is filled
{
if (!dx) dx=1;
if (!dy) dy=1;
// diamond (skip first one for islands)
if ((!_island)||(dx!=mxs))
for (y=dy2,yy=mys-dy2;y<=yy;y+=dy)
for (x=dx2,xx=mxs-dx2;x<=xx;x+=dx)
ter[y][x]=((ter[y-dy2][x-dx2]+ter[y-dy2][x+dx2]+ter[y+dy2][x-dx2]+ter[y+dy2][x+dx2])>>2)+Random(r)-r2;
// square
for (y=dy2,yy=mys-dy2;y<=yy;y+=dy)
for (x=dx ,xx=mxs-dx ;x<=xx;x+=dx)
ter[y][x]=((ter[y][x-dx2]+ter[y][x+dx2]+ter[y-dy2][x]+ter[y+dy2][x])>>2)+Random(r)-r2;
for (y=dy ,yy=mys-dy ;y<=yy;y+=dy)
for (x=dx2,xx=mxs-dx2;x<=xx;x+=dx)
ter[y][x]=((ter[y][x-dx2]+ter[y][x+dx2]+ter[y-dy2][x]+ter[y+dy2][x])>>2)+Random(r)-r2;
for (x=dx2,xx=mxs-dx2;x<=xx;x+=dx)
{
y= 0; ter[y][x]=((ter[y][x-dx2]+ter[y][x+dx2]+ter[y+dy2][x])/3)+Random(r)-r2;
y=mys; ter[y][x]=((ter[y][x-dx2]+ter[y][x+dx2]+ter[y-dy2][x])/3)+Random(r)-r2;
}
for (y=dy2,yy=mys-dy2;y<=yy;y+=dy)
{
x= 0; ter[y][x]=((ter[y][x+dx2]+ter[y-dy2][x]+ter[y+dy2][x])/3)+Random(r)-r2;
x=mxs; ter[y][x]=((ter[y][x-dx2]+ter[y-dy2][x]+ter[y+dy2][x])/3)+Random(r)-r2;
}
if (_island)
{
// recompute middle position after first pass so there can be more central hills
if (dx==mxs) ter[dy2][dx2]=Random(r2);
// adjust border to underwatter
for (y=0;y<=mys;y+=dy2) { ter[y][0]=t; ter[y][mxs]=t; }
for (x=0;x<=mxs;x+=dx2) { ter[0][x]=t; ter[mys][x]=t; }
}
// adjust randomness
r>>=1; if (r<2) r=2; r2=r>>1;
}
// rescale to <h0,h1>
xx=ter[0][0]; yy=xx;
for (y=0;y<=mys;y++)
for (x=0;x<=mxs;x++)
{
z=ter[y][x];
if (xx>z) xx=z;
if (yy<z){ yy=z; xh1=x; yh1=y; }
}
for (y=0;y<=mys;y++)
for (x=0;x<=mxs;x++)
ter[y][x]=h0+(((ter[y][x]-xx)*(h1-h0))/(yy-xx));
// test for correctness
if (_island)
{
l=0;
for (x=0;x<=mxs;x++) { if (ter[0][x]>h_water) l++; if (ter[mys][x]>h_water) l++; }
for (y=0;y<=mys;y++) { if (ter[y][0]>h_water) l++; if (ter[y][mxs]>h_water) l++; }
if (l>1+((mxs+mys)>>3)) continue;
}
break;
}
// [Surface]
for (y=0;y<mys;y++)
for (x=0;x<mxs;x++)
{
z=ter[y][x];
// max slope [deg]
a=atan2(ter[y][x+1]-z,d_pixel);
b=atan2(ter[y+1][x]-z,d_pixel);
if (a<b) a=b; a*=180.0/M_PI;
c=_cover_none;
if (z<=h_water) c=_cover_water;
if (z>=h_snow ) c=_cover_snow;
t=_terrain_dirt;
if (z<=h_sand) t=_terrain_sand;
if (z>=h_rock) t=_terrain_rock;
if (a>=a_rock) t=_terrain_rock;
f=_flora_none;
if (t==_terrain_dirt)
{
r=Random(100);
if (r>10) f=_flora_grass;
if (r>50)
{
if (z>h_evergreen) f=_flora_evergreen;
else{
r=Random(h_evergreen);
if (r<=z) f=_flora_evergreen;
else f=_flora_hardwood;
}
}
if (r<5) f=_flora_deadwood;
}
typ[y][x]=(c<<_cover_shift)|(t<<_terrain_shift)|(f<<_flora_shift);
}
// [Rivers]
for (ix=10+Random(5),a=0.0,da=2.0*M_PI/float(ix);ix;ix--)
{
// random start around topest hill
a+=da*(0.75+(0.50*Random()));
for (l=0;l<10;l++)
{
b=Random(mxs>>3);
x=xh1; x+=float(b*cos(a));
y=yh1; y+=float(b*sin(a));
if ((x<1)||(x>=mxs)) continue;
if ((y<1)||(y>=mys)) continue;
if (typ[y][x]&0x00F==_cover_water) continue;
l=-1;
break;
} if (l>=0) continue; // safety check
for (l=0,r2=0;;)
{
// stop on map edge
if ((x<=0)||(x>=mxs-1)||(y<=0)||(y>=mys-1)) break;
// decode generated surface
r=typ[y][x];
c=(r>> _cover_shift)& _cover_mask;
t=(r>>_terrain_shift)&_terrain_mask;
f=(r>> _flora_shift)& _flora_mask;
// stop if reached sea
if (c==_cover_water) break;
// insert river dot radius = r2
dx=x-r2; if (dx<0) dx=0; dx2=x+r2; if (dx2>=mxs) dx2=mxs-1;
dy=y-r2; if (dy<0) dy=0; dy2=y+r2; if (dy2>=mys) dy2=mys-1;
for (yy=dy;yy<=dy2;yy++)
for (xx=dx;xx<=dx2;xx++)
if (((xx-x)*(xx-x))+((yy-y)*(yy-y))<=r2*r2)
if (((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)
typ[yy][xx]=(typ[yy][xx]&0x00F)|(_terrain_temp<<_terrain_shift);
// step to smalest elevation neighbor
dx=x; dy=y; z=h1; typ[y][x]=(typ[y][x]&0x00F)|(_terrain_water<<_terrain_shift); xx=x; yy=y;
xx--; r=ter[yy][xx]; if ((z>=r)&&(((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)) { z=r; dx=xx; dy=yy; }
yy--; r=ter[yy][xx]; if ((z>=r)&&(((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)) { z=r; dx=xx; dy=yy; }
xx++; r=ter[yy][xx]; if ((z>=r)&&(((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)) { z=r; dx=xx; dy=yy; }
xx++; r=ter[yy][xx]; if ((z>=r)&&(((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)) { z=r; dx=xx; dy=yy; }
yy++; r=ter[yy][xx]; if ((z>=r)&&(((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)) { z=r; dx=xx; dy=yy; }
yy++; r=ter[yy][xx]; if ((z>=r)&&(((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)) { z=r; dx=xx; dy=yy; }
xx--; r=ter[yy][xx]; if ((z>=r)&&(((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)) { z=r; dx=xx; dy=yy; }
xx--; r=ter[yy][xx]; if ((z>=r)&&(((typ[yy][xx]>>_terrain_shift)&_terrain_mask)!=_terrain_water)) { z=r; dx=xx; dy=yy; }
if ((dx==x)&&(dy==y))
{
// handle invalid path or need for a lake!!!
if (dx>mxs>>1) dx++; else dx--;
if (dy>mys>>1) dy++; else dy--;
}
x=dx; y=dy;
// increase river volume with length
l++; if (l>d_river_l*(r2+1)) { l=0; if (r2<d_river_w) r2++; }
}
// make merging of rivers possible
for (y=0;y<=mys;y++)
for (x=0;x<=mxs;x++)
if (((typ[y][x]>>_terrain_shift)&_terrain_mask)==_terrain_water)
typ[y][x]=(typ[y][x]&0x00F)|(_terrain_temp<<_terrain_shift);
}
for (y=0;y<=mys;y++)
for (x=0;x<=mxs;x++)
if (((typ[y][x]>>_terrain_shift)&_terrain_mask)==_terrain_temp)
typ[y][x]=(typ[y][x]&0x00F)|(_terrain_water<<_terrain_shift);
// [copy data] rewrite this part to suite your needs
for (y=1;y<_ys;y++)
for (x=1;x<_xs;x++)
{
float nx,ny,nz,x0,y0,z0,x1,y1,z1;
// (nx,ny,nz) = surface normal
nx=0.0; ny=0.0; nz=ter[y][x];
x0=-d_pixel; y0=0.0; z0=ter[y][x-1];
x1=0.0; y1=-d_pixel; z1=ter[y-1][x];
x0-=nx; x1-=nx;
y0-=ny; y1-=ny;
z0-=nz; z1-=nz;
nx=(y0*z1)-(z0*y1);
ny=(z0*x1)-(x0*z1);
nz=(x0*y1)-(y0*x1);
x0=1.0/sqrt((nx*nx)+(ny*ny)+(nz*nz));
nx*=x0;
ny*=x0;
nz*=x0;
// z = ambient light + normal shading
nz=(+0.7*nx)+(-0.7*ny)+(+0.7*nz);
if (nz<0.0) nz=0.0;
nz=255.0*(0.2+(0.8*nz)); z=nz;
// r = base color
r=typ[y][x];
c=(r>> _cover_shift)& _cover_mask;
t=(r>>_terrain_shift)&_terrain_mask;
f=(r>> _flora_shift)& _flora_mask;
r=_terrain[t];
if (c) r= _cover[c];
if (f){ if (c) r|=_flora[f]; else r=_flora[f]; };
// sea color is depending on depth not surface normal
if (c==_cover_water) z=256-((ter[y][x]<<7)/h0);
// apply lighting z to color r
yy=int(r>>16)&255; yy=(yy*z)>>8; if (yy>255) yy=255; r=(r&0x0000FFFF)|(yy<<16);
yy=int(r>> 8)&255; yy=(yy*z)>>8; if (yy>255) yy=255; r=(r&0x00FF00FF)|(yy<< 8);
yy=int(r )&255; yy=(yy*z)>>8; if (yy>255) yy=255; r=(r&0x00FFFF00)|(yy );
// set pixel to target image
pic.p[y][x].dd=r;
}
// free ter[][],typ[][]
for (y=0;y<=mys;y++) delete[] ter[y]; delete[] ter; ter=NULL;
for (y=0;y<=mys;y++) delete[] typ[y]; delete[] typ; typ=NULL;
}
//---------------------------------------------------------------------------
The code is based on the code from the linked Answer of mine but with added features (rivers included). I use my own picture class for images so some members are:
xs,ys size of image in pixels
p[y][x].dd is pixel at (x,y) position as 32 bit integer type
clear(color) - clears entire image
resize(xs,ys) - resizes image to new resolution
bmp - VCL encapsulated GDI Bitmap with Canvas access
You can tweak the adjust randomness in Diamond&Square to change the terrain smoothness. Also the height limits and tresholds can be tampered with.
To achieve more brunching like rivers seed more start points in clusters so they should merge in time into single or more rivers.
Your river delta looks much like a tree. Here is some Python code using turtle for Graphics to draw a tree.
# You can edit this code and run it right here in the browser!
# Try changing colors or adding your own shapes.
import turtle
from random import randint
def tree(length,n, ps):
""" paints a branch of a tree with 2 smaller branches, like an Y"""
if length < (length/n):
return # escape the function
turtle.pensize(max(ps,1))
turtle.forward(length) # paint the thik branch of the tree
lb = 45+randint(-20,20)
turtle.left(lb) # rotate left for smaller "fork" branch
tree(length * 0.5*(1+randint(-20,20)/100),length/n,ps-1) # create a smaller branch with 1/2 the lenght of the parent branch
rb = 45+randint(-20,20)
turtle.right(lb+rb) # rotoate right for smaller "fork" branch
tree(length * 0.6,length/n,ps-1) # create second smaller branch
turtle.left(rb) # rotate back to original heading
rt = randint(-20,20)
turtle.right(rt)
tree(length * 0.45,length/n,ps-1)
turtle.left(rt)
turtle.backward(length) # move back to original position
return # leave the function, continue with calling program
turtle.left(90)
turtle.penup()
turtle.backward(250)
turtle.pendown()
tree(150,5,5)