GCC: __atomic_always_lock_free compiles with -O3, but not with -O0 - gcc

Sample code:
int *s;
int foo(void)
{
return 4;
}
int bar(void)
{
return __atomic_always_lock_free(foo(), s);
}
Invocations:
$ gcc t0.c -O3 -c
<nothing>
$ gcc t0.c -O0 -c
t0.c:10:10: error: non-constant argument 1 to '__atomic_always_lock_free'
Any ideas?
Relevant: https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html.

This doesn't seem surprising. The documentation you linked says that "size must resolve to a compile-time constant" and so it's to be expected that you might get an error when passing foo(). However, it's typical that if GCC is able to determine the value of an expression at compile time, then it will treat it as a compile-time constant, even if it doesn't meet the language's basic definition of a constant expression. This may be considered an extension and is explicitly allowed by the C17 standard at 6.6p10.
The optimization level is relevant to what the compiler tries in attempting to evaluate an expression at compile time. With optimizations off, it does little more than the basic constant folding that the standard requires (e.g. 2*4). With optimizations on, you get the benefit of its full constant propagation pass, as well as function inlining.
So in essence, under -O0, the compiler doesn't notice that foo() always returns the same value, because you've disabled the optimizations that would allow it to reach that conclusion. With -O3 it does and so it accepts it as a constant.

Related

Why does the comparison with integer works for nullptr?

The following works for g++
assert(nullptr == 0);
I need to know if there is any implicit type conversion that is happening.
From what I know, nullptr can be compared with pointers only and not with integers, and also that it is more type-safe. Then why the comparison with integer works?
Then why the comparison with integer works?
Because, in most implementations, the nullptr is a 0 machine address. In other words (intptr_t)nullptr is 0. This is the case on Linux/x86-64 for example. Check by inspecting the generated assembler code obtained with g++ -S -O2 -fverbose-asm
I even believe that this is guaranteed by the C++ standard (read e.g. n3337)
However, if you compile your code with a recent GCC as gcc -Wall -Wextra you could get a warning.
Read also assert(3). In some cases (with NDEBUG) it is expanded to a no-op at compilation time.

Passing multiple -std switches to g++

Is it safe to assume that running g++ with
g++ -std=c++98 -std=c++11 ...
will compile using C++11? I haven't found an explicit confirmation in the documentation, but I see the -O flags behave this way.
The GCC manual doesn't state that the
last of any mutually exclusive -std=... options specified takes effect. The first occurrence
or the last occurrence are the only alternatives. There are numerous
GCC flags that take mutually exclusive alternative values from a finite set - mutually
exclusive, at least modulo the language of a translation unit. Let's call them mutex options for short.
It is a seemingly random rarity for it to be documented that the last setting takes effect. It is
documented for the -O options as you've noted, and in general terms for mutually exclusive warning options, perhaps
others. It's never documented that the first of multiple setting takes effect, because
it's never true.
The documentation leans - with imperfect consistency - on the historical conventions
of command usage in unix-likes OSes. If a command accepts a mutex option
then the last occurrence of the option takes effect. If the command were - unusually -
to act only on the first occurrence of the option then it would be a bug for
the command to accept subsequent occurrences at all: it should give a usage error.
This is custom and practice. The custom facilitates scripting with tools that
respect it, e.g. a script can invoke a tool passing a default setting of some
mutex option but enable the user to override that setting via a parameter of the script,
whose value can simply be appended to the default invocation.
In the absence of official GCC documentation to the effect you want, you might get
reassurance by attempting to find any GCC mutex option for which it is not
the case that the last occurrence takes effect. Here's one stab:
I'll compile and link this program:
main.cpp
#include <cstdio>
#if __cplusplus >= 201103L
static const char * str = "C++11";
#else
static const char * str = "Not C++11";
#endif
int main()
{
printf("%s\n%d\n",str,str); // Format `%d` for `str` mismatch
return 0;
}
with the commandline:
g++ -std=c++98 -std=c++11 -m32 -m64 -O0 -O1 -g3 -g0 \
-Wformat -Wno-format -o wrong -o right main.cpp
which requests contradictory option pairs:
-std=c++98 -std=c++11: Conform to C++98. Conform to C++11.
-m32 -m64: Produce 32-bit code. Produce 64-bit code.
-O0 -O1: Do not optimise at all. Optimize to level 1.
-g3 -g0: Emit maximum debugging info. Emit no debugging info.
-Wformat -Wno-format. Sanity-check printf arguments. Don't sanity check them.
-o wrong -o right. Output program wrong. Output program right
It builds successfully with no diagnostics:
$ echo "[$(g++ -std=c++98 -std=c++11 -m32 -m64 -O0 -O1 -g3 -g0 \
-Wformat -Wno-format -o wrong -o right main.cpp 2>&1)]"
[]
It outputs no program wrong:
$ ./wrong
bash: ./wrong: No such file or directory
It does output a program right:
$ ./right
C++11
-1713064076
which tells us it was compiled to C++11, not C++98.
The bug exposed by the garbage -1713064076 was not diagnosed because
-Wno-format, not -Wformat, took effect.
It is a 64-bit, not 32-bit executable:
$ file right
right: ELF 64-bit LSB shared object, x86-64 ...
It was optimized -O1, not -O0, because:
$ "[$(nm -C right | grep str)]"
[]
shows that the local symbol str is not in the symbol table.
And it contains no debugging information:
echo "[$(readelf --debug-dump right)]"
[]
as per -g0, not -g3.
Since GCC is open-source software, another way of resolving doubts
about its behaviour that is available to C programmers, at least,
is to inspect the relevant source code, available via git source-control at
https://github.com/gcc-mirror/gcc.
The relevant source code for your question is in file gcc/gcc/c-family/c-opts.c,
function,
/* Handle switch SCODE with argument ARG. VALUE is true, unless no-
form of an -f or -W option was given. Returns false if the switch was
invalid, true if valid. Use HANDLERS in recursive handle_option calls. */
bool
c_common_handle_option (size_t scode, const char *arg, int value,
int kind, location_t loc,
const struct cl_option_handlers *handlers);
It is essentially a simple switch ladder over option settings enumerated by scode - which
is OPT_std_c__11 for option -std=c++11 - and leaves no doubt that it
puts an -std option setting into effect regardless of what setting was in effect previously. You can look at branches other than master
(gcc-{5|6|7}-branch) with the same conclusion.
It's not uncommon to find GCC build system scripts that rely on the validity of
overriding an option setting by appending a new setting. Legalistically, this
is usually counting on undocumented behaviour, but there's a better
chance of Russia joining NATO than of GCC ceasing to take the last setting that
it parses for a mutex option.

warning switch for condition function as a variable

I have errornously forgotten to put the parameter List after the call to a function, and the gcc did not intercept (because he believes it is a TRUTH-value). Is there a gcc warning/error switch, which helps me to locate those places? example:
short function(short arg);
main() {
if (function) { // I wanted to write function(arg)
//do something
}
}
The Version of the gcc I am using is 3.2.1.
Looking at the GCC man page, it seems that what you need is -Waddress.
-Waddress
Warn about suspicious uses of memory addresses. These include using the address of a function in a conditional
expression, such as "void func(void); if (func)", and comparisons against the memory address of a string literal, such as
"if (x == "abc")". Such uses typically indicate a programmer error: the address of a function always evaluates to true,
so their use in a conditional usually indicate that the programmer forgot the parentheses in a function call; and
comparisons against string literals result in unspecified behavior and are not portable in C, so they usually indicate
that the programmer intended to use "strcmp". This warning is enabled by -Wall.
As stated there, you can enable this flag with -Wall too.
Use "-Wall" option with gcc. This option force gcc to show all kinds of warnings at compilation.
You may get following warning when you compile your code by 'gcc -Wall' command.
`function' undeclared (first use in this function)

gcc optimizations: how to deal with macro expantion in strncmp & other functions

Take this sample code:
#include <string.h>
#define STRcommaLEN(str) (str), (sizeof(str)-1)
int main() {
const char * b = "string2";
const char * c = "string3";
strncmp(b, STRcommaLEN(c));
}
If you don't use optimizations in GCC, all is fine, but if you add -O1 and above, as in gcc -E -std=gnu99 -Wall -Wextra -c -I/usr/local/include -O1 sample.c, strncmp becomes a macro, and in preprocessing stage STRcommaLen is not expanded. In fact in resulting "code" strncmp's arguments are completely stripped.
I know if I add #define NEWstrncmp(a, b) strncmp (a, b) and use it instead, the problem goes away. However, mapping your own functions to every standard function that may become a macro doesn't seem like a great solution.
I tried finding the specific optimization that is responsible for it and failed. In fact if I replace -O1 with all the flags that it enables according to man gcc, the problem goes away. My conclusion is that -O1 adds some optimizations that are not controlled by flags and this is one of them.
How would you deal with this issue in a generic way? There may be some macro magic I am not familiar with or compiler flags I haven't looked at? We have many macros and a substantial code base - this code is just written to demonstrate one example.
Btw, GCC version/platform is gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5).
Thanks,
Alen
You correctly noted that
in preprocessing stage STRcommaLen is not expanded
- more precisely, not before the strncmp macro gets expanded. This inevitably leads to an error you probably overlooked or forgot to mention:
sample.c:7:30: error: macro "strncmp" requires 3 arguments, but only 2 given
Your conclusion
that -O1 adds some optimizations that are not controlled by flags and
this is one of them
is also right - this is controlled by the macro __OPTIMIZE__ which apparently gets set by -O1.
If I'd do something like that (which I probably wouldn't, in respect of the pitfall you demonstrated by using sizeof a char *), I'd still choose
mapping your own functions to every standard function that may become
a macro
- but rather like
#include <string.h>
#define STRNCMP(s1, s2) strncmp(s1, s2, sizeof(s2)-1)
int main()
{
const char b[] = "string2";
const char c[] = "string3";
STRNCMP(b, c);
}

gcc warning flag for bogus comparison

I am searching for the right warning flag to use with gcc to detect something like:
#include <stdlib.h>
#include <stdio.h>
int main()
{
const size_t n = (size_t)-1;
for( unsigned int i = 0; i < n; ++i ) /* use `unsigned char` if you want */
{
printf( "%d\n", i );
}
return 0;
}
I tried:
$ gcc -Wsign-conversion -Wconversion -pedantic -Wsign-compare -W -Wall -Wextra -std=c99 t.c
What happened is that I have been modifying an existing code, that uses unsigned int for memory block size. The code starting failing with larger file. So I need to check I did not miss any remaining left over.
EDIT:
Just discovered -Wtype-limits but again this is not working for me
You are asking the compiler to detect that the condition is always true at run-time. This is barely within its possibilities in this case, because the reason it is always true is that one side is constant and the other is limited by the unsigned int type. I am glad that you found a g++ flag that did it, but if the value of variable n was provided in a different file, or not typed as const, for instance, the compiler may be unable to detect that the condition remains true.
You may also consider using a static analyzer that spends more time than a compiler on the detection of what may and may not happen at run-time. One open-source C analyzer is Frama-C:
In the screenshot, the statements in red have been detected as unreachable.
The open-source version only works well if the programs makes limited use of library functions, but even so, it can extract information that does not appear in g++'s warnings.
Ok, found out the trick, you need to use the c++ compiler instead:
$ g++ -Wextra t.c
t.c: In function ‘int main()’:
t.c:6: warning: comparison is always true due to limited range of data type
with:
$ g++ --version
g++ (Debian 4.4.5-8) 4.4.5
Copyright (C) 2010 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Resources