kotlin autowired spring beans in high order functions - spring

I have a high order kotlin function like this:
fun findById(id:Long):User {
return jdbcTemplate.query(...)
}
jdbcTemplate comes from a Spring context. I've tried to inject it but #Autowired doesn't work since I have no enclosing class (as I understood).
What is the idiomatic way (Good way) to do it (inject a bean) in kotlin? thx.

Related

Is it still loose coupling if we use #qualifier

we use interface for autowiring service into controller
this is for loose coupling , coz the interface can hold object of any of its implementations. so no need to write the implementation name and create tight coupling.
however when we have more than one implementations for an interface, we write the #qualifier .
my question is if we have to write qualifier to tell which implementation needs to be injected, then should we still call it loose coupling??
class ServiceInterface {
interfaceMethod();
}
implementation 1:
#component("service1")
class ServiceImpl1 implements ServiceInterface {
interfacemethod(){
}
}
implementation 2:
#component("service2")
class ServiceImpl2 implements ServiceInterface {
interfaceMethod(){
}
now only instead of directly creating Object of ServiceImpl1() using new
ServiceImpl1 obj = new ServiceImpl1();
we write in
class Controller {
#autowired
#qualifier("service1")
ServiceInterface se;
sc.interfaceMethod();
}
Partially yes, because the component that uses the injected qualified bean still didn't create it or handle its lifecycle.
But indeed using #Qualifier creates some sort of coupling. If you want to avoid this, consider making one of your ServiceInterface beans the primary implementation for the interface annotating its class with #Primary as follows:
#Component
#Primary
class ServiceImpl1 implements ServiceInterface {
interfacemethod(){
}
}
With this, every time you need a ServiceInterface implementation but you don't actually specify which one you want (using #Qualifier) the primary one is injected by Spring.
Even though you are using the #Qualifier annotation you are still using inversion of control to let the framework manage your dependencies.
Furthermore, lets say you wouldn't autowire this implementation but use 'new' to create your object.
When the implementation changes you would need to update all the places where this is created. However, with dependency injection you wouldn't need to do so. Therefore you still have the advantages of dependency injection with regards to loose coupling.
If you would like to have your implementation less coupled with your target class then you could do a few things
Use #Primary for a bean to determine the default implementation.
Autowire your implementations into a List<ServiceInterface>
Use Spring's ObjectFactory to determine which bean to use at runtime
Use Profiles to determine which bean to autowire

Factory design pattern and Spring

I am wondering what is the current best practice as to the use of factory pattern within the context of Spring framework in using dependency injection. My wonder arises about whether the factory pattern is still relevant nowadays in light of the use of Spring dependency injection. I did some searching and see some past discussion (Dependency Injection vs Factory Pattern) but seem there is different view.
I see in some real life project in using a Map to hold all the beans and rely on autowiring to create those beans. When the bean is needed, it get it via the map using the key.
public abstract class Service {
//some methods
}
#Component
public class serviceA extends Service {
//implementation
}
#Component
public class serviceB extends Service {
//implementation
}
Map<String, Service> services;
But I see there is some difference among the two approaches.
Using the above method, all beans are created on application start up and the creation of object is handled by the framework. It also implies there is only one bean for each type.
While for factory pattern, the factory class creates the object on request. And it can create a new object for each request.
I think a deeper question may be, when Spring framework is used in a project, should it be strived to not create any object inside a class, which means the factory pattern ( or any creational design patterns?) should not be used, as Spring is supposed to be the central handler of the objects dependency ?
The answer to this question can be really deep and broad, I'll try to provide some points that hopefully will help.
First off, spring stores its beans (singletons) in the ApplicationContext. Essentially this is the map you're talking about. In a nutshell, it allows getting the bean by name, type, etc.
ApplicationContext, while being a really important concept, is not the whole Spring, in fact Spring framework allows much more flexibility:
You say, using a map implies that all the beans will be created at the beginning of the application and there is one instance of the bean.
Spring has a concept of Lazy beans, basically supporting a concept of beans being actually created only when they're required for the first time, so Spring supports the "delayed" beans initialization
Spring also allows more than one instance of a bean per type. So this map is more "advanced". For example you can create more than one implementation of the interface and use declare both as beans. As long as you provide enough information about what bean should be injected to the class that might use them (for example with a help of qualifiers suppored in spring), you're good to go. In addition, there are features in spring IoC container that allow injecting all registered implementations of an interface into a list:
interface Foo {}
#Component
class FooImpl1 implements Foo {}
#Component
class FooImpl2 implements Foo {}
class Client {
#Autowired
List<Foo> allFoos;
}
Now you say:
While for factory pattern, the factory class creates the object on request. And it can create a new object for each request.
Actually Spring can create objects per request. Not all beans have to be singletons, in general spring has a concept of scopes for this purposes.
For example, scope prototype means that Spring will create a bean upon each usage. In particular one interesting usage that spring supports in variety of ways is Injecting prototype bean into singleton. Some solutions use exactly like a factory (read about annotation #Lookup others rely on auto-generated proxy in runtime (like javax.inject.Provider). Prototype scope beans are not held in the application context, so here again spring goes beyond a simple map abstraction.
Last feature that you haven't mentioned is that sometimes even for singletons the initialization can be a little bit more complicated then calling a constructor with Parameters. Spring can address that by using Java Configurations:
#Configuration
public class MyConfig {
public SomeComplicatedObject foo(#Value("...") config, Bar bar) {
SomeComplicatedObject obj = new SomeComplicatedObject() // lets pretend this object is from some thirdparty, it only has no-op constructor, and you can't place spring annotations on it (basically you can't change it):
obj.setConfig(config);
obj.setBar(bar);
return obj;
}
}
The method foo here initializes the object SomeComplicatedObject and returns it. This can be used instead of factories to integrate "legacy" code (well, java configurations go way beyond this, but its out of scope for this question).
So bottom line, you Spring as an IoC container can provide many different ways to deal with object creation, in particular it can do everything that factory design pattern offers.
Now, I would like to also refer to your last sentense:
I think a deeper question may be, when Spring framework is used in a project, should it be strived to not create any object inside a class, which means the factory pattern ( or any creational design patterns?) should not be used, as Spring is supposed to be the central handler of the objects dependency ?
Indeed you don't have to use Factory Pattern when using Spring, since (as I hopefully have convinced you) provides everything that factory can do and more.
Also I agree that spring is supposed to be the central handler of the objects dependency (unless there are also parts of the application which are written in a different manner so you have to support both :) )
I don't think we should avoid using "new" altogether, not everything should/can be a bean, but I do see (from my subjective experience, so this is arguable) that you use it much less leaving the creation of most of the objects to Spring.
Should we avoid a usage of any creation design pattern? I don't think so, sometimes you can opt for implementing "builder" design pattern for example, its also a creational pattern but spring doesn't provide a similar abstraction.
I think if your project uses Spring framework you should use it. Although it depends on your project design e.g. You may use creational patterns along side with Spring IoC. e.g when you have abstraction layers not framework dependant (agnostic code)
interface ServiceFactory {
Service create(String type);
}
#Component
class SpringServiceFactory implements ServiceFactory {
#Autowired private ApplicationContext context;
Service create(String type) {
return context.getBean(type)
}
}
I use Factory pattern as well when I refactor legacy not unit testable code which also uses Spring Framework in order to implement unit tests.
// legacy service impossible to mock
class LegacyApiClient implements Closeable {...}
#Component
class LegacyApiClientFactory {
LegacyApiClient create(String endpoint) {
return new LegacyApiClient(endpoint);
}
}
#Component
class OtherService {
private final String endpoint
private final LegacyApiClientFactory factory;
OtherService(#Value("${post.endpoint}") String endpoint,
LegacyApiClientFactory factory) {...}
void doCall {
try (LegacyApiClient client = factory.create(endpoint)) {
client.postSomething();
}
}
}
....
// a random unit test
LegacyApiClient client = mock(LegacyApiClient.class)
LegacyApiClientFactory factory = mock(LegacyApiClientFactory.class)
OtherService service = new OtherService("http://scxsc", factory);
when(factory.create(any())).thenReturn(client)
service.doCall()
....

How Field Injection in Spring Boot works internally?

#Autowired
UserService userService;
What happens exactly inside `#Autowired annotation whether it uses Constructor Injection or Setter Injection. I know that it is field Injection.
I'm not asking How IOC or DI works, I'm asking How Field Injection in Spring Boot works internally?
Basically field inject is a type of injection (obviously), so Spring injects dependency based on field type and maybe some annotations (like #Qualifier).
How does it work?
When Spring creates a bean, there is a special Bean Post Processor org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor
Each field marked with #Autowired is considered by spring as a dependency, so it must analyze these dependencies (by using reflection under the hood) and find a match from the application context for each field (by Type, qualifier if specified, etc.). Then it sets the value, right into the field, again by reflection.
I don't intend to start "holly-wars" here, but I'll just mention that I personally try to avoid using this type of injection because it effectively breaks encapsulation of dependencies, making the class with autowired fields non-unit testable.
For example if you have something like this:
#Component
class Foo {
#Autowired
private Bar bar;
public Foo() {} // no-arg construction that exists by default
}
#Component
class Bar {
}
Then when you create an instance of Foo by yourself (e.g. in unit-test) you have no clear way to supply the Bar dependency to Foo instance without relying on spring.
Constructor Injection solves this for example.

Spring boot test minimal test slice or manual configuration

I have many different SpringBoot tests running. So far the auto configuration slices were really helpful, especially in combination with #MockBean.
But in my current test no such slice fits and booting up the complete context using #SpringBootTest is too slow.
Is there a way to manually set the tip of the object tree to be started with and from there spring autowires all needed beans? Or is there a way to set all needed beans manually?
In my specific case i want to test a MapStruct generated mapper (using componentModel = "spring") this mapper uses two other mappers, each injecting a service to do their work.
The services are provided via #MockBean:
#RunWith(SpringRunner.class)
#SpringBootTest
public class ProductResponsibleUnitMapperTest {
#Autowired
private PRUMapper mapper;
#MockBean
private TradingPartnerService tradingPartnerService;
#MockBean
private ProductHierarchyService productHierarchyService;
#Test
public void mapForthAndBack(){
//works but takes ages to boot
}
}
I could not use constructor injection on the mappers (for the services) because MapStruct won't generate correct implementations.
How to get a Spring-Context only containing the needed beans?
I found one way by explicitly declaring all implementation used:
#SpringBootTest(classes = {ProductResponsibleUnitMapperImpl.class, LegalEntityMapperImpl.class, ProductHierarchyMapperImpl.class})
For more complex setups it will be cumbersome and also dangerous to declare generated classes.
I am still searching for a better cleaner way to let Spring decide what classes needed. It should be possible to set the class in hand and let Spring decide what classes needed and to be instantiated.

Ways in which Spring do Dependency Injection

I have some experience in Spring Framework. Spring usually do the DI using the constructor injection or setter injection. This concept I am comfortable. Now, in addition to this, I have seen the Spring do DI like this:
#Autowired
DataSource myData;
OR
#Resouce(name="someName")
SomeDependency dependency;
What mechanism do Spring utilise when it uses annotations to do the DI? Does Spring use constructor or setter injection in these cases or is annotation driven approach altogether a different way of injecting the dependencies?
Any explanation in simple worlds would be of great help.
You can do setter injection and constructor injection by #Autowired means.
#Autowired
private Person person;
#Autowired
public Customer(Person person) {
this.person = person;
}
By default autowired inject beans by TYPE. Behind the scene it makes injection via java reflection mechanism. So you can do the same things(that you've done with xml config) with annotation config.
In addition want to add that constructor injection is more preferable(except cases where there are to much arguments).
Main advantage of constructor injection:
You can't avoid passing arguments to constructor and create bean without them.
So in most all cases you want dependency to be injected, while setter injection doesn't guarantee it(you can get this annoying NPE that appears during wrong setter injection).
Specific rules of autowired using :
http://docs.spring.io/spring/docs/4.2.7.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html

Resources