I've a node.js socket.io implementation that I need to use all cores on an EC2 Ubuntu instance.
All tutorials / info seems to be about horizontal scaling with Redis etc. I don't need that, but I do want to use all the cores on the server.
Do I need sticky sessions (e.g. with sticky-session) to scale vertically and use all CPU cores?
Related
I have a ruby app deployed on a server and redis on another server. What are the pros and cons of deploying sidekiq on same server as ruby app?
Probably better for Serverfault...
But the biggest pro for keeping them separate is that you can scale your application servers and point them all to your redis server, so you can more easily scale your application horizontally.
When you've got both on a single server, it might be a bit easier/cheaper to manage, but you'll never be able to scale it separately and Redis will be eating a bit of your RAM that your application won't be able to use.
I am trying to test a technology stack that would utilize a cluster of parallella boards as data center appliances. My plan is to use Mesos with Docker, which seems entirely feasible. My question refers to the 16 core Epiphany chip on the Parallella itself. According to the documentation available from Adapteva, "Epiphany is best leveraged as a massively parallel autonomous application specific processor."
So basically, do I need to write a custom tasking service that will allow Mesos to utilize the Epiphany cores, or can Mesos "discover" the Epiphany on it's own?
PS: I am aware that data center appliance use is not typical for a Parallella, but my particular use case requires a compact form factor and extremely low power consumption.
I'm trying to figure out what would be the reasons for using Mesos. Can you come up with other ones?
Running all of your services in the same cluster instead of dedicated clusters (your end-applications + DevOps such as Jenkins)
Running different maturity applications in same cluster (dev, test, production), or is this viable? Kubernetes has a similar approach with Labels
Mesos simplifies the use of traditional distributed applications such as Hadoop by easing deployment, unified API, bin-packing of resources
Full-disclosure: I currently work at Twitter and I'm involved in both Apache Mesos and Aurora.
Mesos uses cases can vary based upon a few dimensions: scale (10 servers vs 10s of thousands), available hardware (dedicated/static or in the public cloud/scalable), and workloads (primarily services, batch, or both).
Your list is a great start. Here are a few additional use cases / features to add.
Container Orchestration
As container runtimes like Docker have become popular, lots of potential users are looking at Mesos + a scheduler to manage orchestration once container images are created. Mesos is already quite mature and has been proven at scale, which I think has given it a leg up over some emergent solutions.
Increased Resource Utilization
For companies running >50 servers, a common motivation for adopting Mesos is to increase resource utilization to reduce CapEx. There are a number of examples of this in both the public and private cloud. In the case of Ebay they have been running Jenkins on Mesos and were able to reduce their VM footprint. Mesosphere has also published a case study of HubSpot (runnning on AWS), and how they've been able to replace hundreds of smaller servers with dozens of larger ones by more-efficiently using their available hardware.
Preemption
At Twitter we're running Mesos via one scheduler: Apache Aurora. One of the ways we can improve utilization relates to your use case: running different maturity applications in the same cluster. Aurora has a concept of environments, so you can run applications that are production, development, or test. Additionally, Aurora has a built-in preemption feature which allows it to prioritize production over non-production tasks, killing non-production tasks when those resources are needed to run production ones as well as a priority system within each environment.
Long-term, functionality related to preemption will also be located in the Mesos core itself -- it's a killer feature related to both increased resource utilization and running different maturity applications (dev, test, prod). There are a few Mesos tickets to follow if you're interested in keeping up to date, including MESOS-155 for preemption, and MESOS-1474 for inverse offers.
Colocating Batch and Services
Running batch and services in a shared Mesos cluster will be key to driving up utilization even further as js84 points out. Check out Project Myriad, an effort to colocate Mesos and YARN workloads in the same cluster. At this time I'm not aware of any large deployments running both batch and services, but it's certainly the direction the community is moving in as it becomes easier for multiple frameworks to run in a shared cluster.
At least one additional use case comes to mind: Development SDK for developing distributed applications. If you have a look at Mesos Frameworks you will find a number of frameworks which have been developed on top of Mesos. Also interesting Apple's Siri framework powering Siri.
Regarding your 1): One additional angle you should keep in mind here is scaling your applications in the same cluster. I.e. at peak load of your website, shift resources easily towards the webservers while scaling down the Hadoop analytical processing.
I am working on my own first mobile app which should be native on Android, iOS and also a web app which runs inside the mobile browser. I plan to use NodeJS and nginx should serve my files, git should be used to push new code to the nodes. My only problem is i have only access to 1 root server with following specs:
Intel Core i7 2600 Quad core
32 GB RAM
2x 3 Terabyte Hard Drive in Software RAID
Unlimited Traffic
My plan is to build own NodeJS modules for the infrastructure of the app and render everything on the clientside with express & dust.js or modify.js.
My question is how to get mutiple nginx and NodeJS server´s as scale out setup, with less overhead to sqeeze most out out of this single machine?
For nginx, I think you just need to make sure you have the accept_mutex setting enabled and enable 4 worker processes
https://stackoverflow.com/a/3436969/266795
for node.js, use the built-in cluster module to run one process per core
In any case, that server is plenty capable of handling massive traffic for most sites/apps. Given this is your first mobile app, your odds of having traffic and workload to outgrow that much server power are near-zero. Don't sweat it.
Does anyone have an experience running clustered Tigase XMPP servers on Amazon's EC2, primarily I wish to know about anything that might trip me up that is non-obvious. (For example apparently running Ejabberd on EC2 can cause issues due to Mnesia.)
Or if you have any general advice to installing and running Tigase on Ubuntu.
Extra information:
The system I’m developing uses XMPP just to communicate (in near real-time) between a mobile app and the server(s).
The number of users will initially be small, but hopefully will grow. This is why the system needs to be scalable. Presumably for a just a few thousand users you wouldn’t need a cc1.4xlarge EC2 instance? (Otherwise this is going to be very expensive to run!)
I plan on using a MySQL database hosted in Amazon RDS for the XMPP server database.
I also plan on creating an external XMPP component written in Python, using SleekXMPP. It will be this external component that does all the ‘work’ of the server, as the application I’m making is quite different from instant messaging. For this part I have not worked out how to connect an external XMPP component written in Python to a Tigase server. The documentation seems to suggest that components are written specifically for Tigase - and not for a general XMPP server, using XEP-0114: Jabber Component Protocol, as I expected.
With this extra information, if you can think of anything else I should know about I’d be glad to know.
Thank you :)
I have lots of experience. I think there is a load of non-obvious problems. Like the only reliable instance to run application like Tigase is cc1.4xlarge. Others cause problems with CPU availability and this is just a lottery whether you are lucky enough to run your service on a server which is not busy with others people work.
Also you need an instance with the highest possible I/O to make sure it can cope with network traffic. The high I/O applies especially to database instance.
Not sure if this is obvious or not, but there is this problem with hostnames on EC2, every time you start instance the hostname changes and IP address changes. Tigase cluster is quite sensitive to hostnames. There is a way to force/change the hostname for the instance, so this might be a way around the problem.
Of course I am talking about a cluster for millions of online users and really high traffic 100k XMPP packets per second or more. Generally for large installation it is way cheaper and more efficient to have a dedicated servers.
Generally Tigase runs very well on Amazon EC2 but you really need the latest SVN code as it has lots of optimizations added especially after tests on the cloud. If you provide some more details about your service I may have some more suggestions.
More comments:
If it comes to costs, a dedicated server is always cheaper option for constantly running service. Unless you plan to switch servers on/off on hourly basis I would recommend going for some dedicated service. Costs are lower and performance is way more predictable.
However, if you really want/need to stick to Amazon EC2 let me give you some concrete numbers, below is a list of instances and how many online users the cluster was able to reliably handle:
5*cc1.4xlarge - 1mln 700k online users
1*c1.xlarge - 118k online users
2*c1.xlarge - 127k online users
2*m2.4xlarge (with 5GB RAM for Tigase) - 236k online users
2*m2.4xlarge (with 20GB RAM for Tigase) - 315k online users
5*m2.4xlarge (with 60GB RAM for Tigase) - 400k online users
5*m2.4xlarge (with 60GB RAM for Tigase) - 312k online users
5*m2.4xlarge (with 60GB RAM for Tigase) - 327k online users
5*m2.4xlarge (with 60GB RAM for Tigase) - 280k online users
A few more comments:
Why amount of memory matters that much? This is because CPU power is very unreliable and inconsistent on all but cc1.4xlarge instances. You have 8 virtual CPUs but if you look at the top command you often see one CPU is working and the rest is not. This insufficient CPU power leads to internal queues grow in the Tigase. When the CPU power is back Tigase can process waiting packets. The more memory Tigase has the more packets can be queued and it better handles CPU deficiencies.
Why there is 5*m2.4xlarge 4 times? This is because I repeated tests many times at different days and time of the day. As you can see depending on the time and date the system could handle different load. I guess this is because Tigase instance shared CPU power with some other services. If they were busy Tigase suffered from CPU under power.
That said I think with installation of up to 10k online users you should be fine. However, other factors like roster size greatly matter as they affect traffic, and load. Also if you have other elements which generate a significant traffic this will put load on your system.
In any case, without some tests it is impossible to tell how really your system behaves or whether it can handle the load.
And the last question regarding component:
Of course Tigase does support XEP-0114 and XEP-0225 for connecting external components. So this should not be a problem with components written in different languages. On the other hand I recommend using Tigase's API for writing component. They can be deployed either as internal Tigase components or as external components and this is transparent for the developer, you do not have to worry about this at development time. This is part of the API and framework.
Also, you can use all the goods from Tigase framework, scripting capabilities, monitoring, statistics, much easier development as you can easily deploy your code as internal component for tests.
You really do not have to worry about any XMPP specific stuff, you just fill body of processPacket(...) method and that's it.
There should be enough online documentation for all of this on the Tigase website.
Also, I would suggest reading about Python support for multi-threading and how it behaves under a very high load. It used to be not so great.