How to convert a v8::Local<v8::Value> into a uint32_t - v8

Given the following code how can I convert the v8::Local<v8::Value> into a uint32_t. Or other types based on the Is* method?
v8::Local<v8::Value> value;
v8::Local<v8::Context> context = v8::Context::New(v8::Isolate::GetCurrent());
if(value->IsUint32()) {
v8::MaybeLocal<Int32> maybeLocal = value->Uint32Value(context);
uint32_t i = maybeLocal;
}

Your posted code doesn't work because value->Uint32Value(context) doesn't return a v8::MaybeLocal<Int32>. C++ types are your friend (just like TypeScript)!
You have two possibilities:
(1) You can use Value::Uint32Value(...) which returns a Maybe<uint32_t>. Since you already checked that value->IsUint32(), this conversion cannot fail, so you can extract the uint32_t wrapped in the Maybe using Maybe::ToChecked().
(2) You can use Value::ToUint32(...) which returns a MaybeLocal<Uint32>. Again, since you already checked that value->IsUint32(), that cannot fail, so you can get a Local<Uint32> via MaybeLocal::ToLocalChecked(), and then simply use -> syntax to call the wrapped Uint32's Value() method, which gives a uint32_t.
If you're only interested in the final uint32_t (and not in the intermediate Local<Uint32>, which you could pass back to JavaScript), then option (1) will be slightly more efficient.
Note that IsUint32() will say false for objects like {valueOf: () => 42; }. If you want to handle such objects, then attempt the conversion, and handle failures, e.g.:
Maybe<uint32_t> maybe_uint = value->Uint32Value(context);
if (maybe_uint.IsJust()) {
uint32_t i = maybe_uint.FromJust();
} else {
// Conversion failed. Maybe it threw an exception (use a `v8::TryCatch` to catch it), or maybe the object wasn't convertible to a uint32.
// Handle that somehow.
}
Also, note that most of these concepts are illustrated in V8's samples and API tests. Reading comments and implementations in the API headers themselves also provides a lot of insight.
Final note: you'll probably want to track the current context you're using, rather than creating a fresh context every time you need one.

Related

Removing a std::function<()> from a vector c++

I'm building a publish-subscribe class (called SystermInterface), which is responsible to receive updates from its instances, and publish them to subscribers.
Adding a subscriber callback function is trivial and has no issues, but removing it yields an error, because std::function<()> is not comparable in C++.
std::vector<std::function<void()> subs;
void subscribe(std::function<void()> f)
{
subs.push_back(f);
}
void unsubscribe(std::function<void()> f)
{
std::remove(subs.begin(), subs.end(), f); // Error
}
I've came down to five solutions to this error:
Registering the function using a weak_ptr, where the subscriber must keep the returned shared_ptr alive.
Solution example at this link.
Instead of registering at a vector, map the callback function by a custom key, unique per callback function.
Solution example at this link
Using vector of function pointers. Example
Make the callback function comparable by utilizing the address.
Use an interface class (parent class) to call a virtual function.
In my design, all intended classes inherits a parent class called
ServiceCore, So instead of registering a callback function, just
register ServiceCore reference in the vector.
Given that the SystemInterface class has a field attribute per instance (ID) (Which is managed by ServiceCore, and supplied to SystemInterface by constructing a ServiceCore child instance).
To my perspective, the first solution is neat and would work, but it requires handling at subscribers, which is something I don't really prefer.
The second solution would make my implementation more complex, where my implementation looks as:
using namespace std;
enum INFO_SUB_IMPORTANCE : uint8_t
{
INFO_SUB_PRIMARY, // Only gets the important updates.
INFO_SUB_COMPLEMENTARY, // Gets more.
INFO_SUB_ALL // Gets all updates
};
using CBF = function<void(string,string)>;
using INFO_SUBTREE = map<INFO_SUB_IMPORTANCE, vector<CBF>>;
using REQINF_SUBS = map<string, INFO_SUBTREE>; // It's keyed by an iterator, explaining it goes out of the question scope.
using INFSRC_SUBS = map<string, INFO_SUBTREE>;
using WILD_SUBS = INFO_SUBTREE;
REQINF_SUBS infoSubrs;
INFSRC_SUBS sourceSubrs;
WILD_SUBS wildSubrs;
void subscribeInfo(string info, INFO_SUB_IMPORTANCE imp, CBF f) {
infoSubrs[info][imp].push_back(f);
}
void subscribeSource(string source, INFO_SUB_IMPORTANCE imp, CBF f) {
sourceSubrs[source][imp].push_back(f);
}
void subscribeWild(INFO_SUB_IMPORTANCE imp, CBF f) {
wildSubrs[imp].push_back(f);
}
The second solution would require INFO_SUBTREE to be an extended map, but can be keyed by an ID:
using KEY_T = uint32_t; // or string...
using INFO_SUBTREE = map<INFO_SUB_IMPORTANCE, map<KEY_T,CBF>>;
For the third solution, I'm not aware of the limitations given by using function pointers, and the consequences of the fourth solution.
The Fifth solution would eliminate the purpose of dealing with CBFs, but it'll be more complex at subscriber-side, where a subscriber is required to override the virtual function and so receives all updates at one place, in which further requires filteration of the message id and so direct the payload to the intended routines using multiple if/else blocks, which will increase by increasing subscriptions.
What I'm looking for is an advice for the best available option.
Regarding your proposed solutions:
That would work. It can be made easy for the caller: have subscribe() create the shared_ptr and corresponding weak_ptr objects, and let it return the shared_ptr.
Then the caller must not lose the key. In a way this is similar to the above.
This of course is less generic, and then you can no longer have (the equivalent of) captures.
You can't: there is no way to get the address of the function stored inside a std::function. You can do &f inside subscribe() but that will only give you the address of the local variable f, which will go out of scope as soon as you return.
That works, and is in a way similar to 1 and 2, although now the "key" is provided by the caller.
Options 1, 2 and 5 are similar in that there is some other data stored in subs that refers to the actual std::function: either a std::shared_ptr, a key or a pointer to a base class. I'll present option 6 here, which is kind of similar in spirit but avoids storing any extra data:
Store a std::function<void()> directly, and return the index in the vector where it was stored. When removing an item, don't std::remove() it, but just set it to std::nullptr. Next time subscribe() is called, it checks if there is an empty element in the vector and reuses it:
std::vector<std::function<void()> subs;
std::size_t subscribe(std::function<void()> f) {
if (auto it = std::find(subs.begin(), subs.end(), std::nullptr); it != subs.end()) {
*it = f;
return std::distance(subs.begin(), it);
} else {
subs.push_back(f);
return subs.size() - 1;
}
}
void unsubscribe(std::size_t index) {
subs[index] = std::nullptr;
}
The code that actually calls the functions stored in subs must now of course first check against std::nullptrs. The above works because std::nullptr is treated as the "empty" function, and there is an operator==() overload that can check a std::function against std::nullptr, thus making std::find() work.
One drawback of option 6 as shown above is that a std::size_t is a rather generic type. To make it safer, you might wrap it in a class SubscriptionHandle or something like that.
As for the best solution: option 1 is quite heavy-weight. Options 2 and 5 are very reasonable, but 6 is, I think, the most efficient.

storing a function that was retrieved from FunctionCallbackInfo

I'm pretty much trying to make a AddInputEvent but, after a month, can't find a way to turn a local "function from FunctionCallbackInfo"(i'll just call this argf) in to a Persistent Function so that garbage collection doesn't erase the pointers.
Most stakeoverflow threads and example code I can find just say to Cast argf with a Local Function; then to throw that in to a Persistent New. This results in a error: cannot convert 'v8::Local<v8::Function>' to 'v8::Function*'
here is the code, not completely sure why I can't convert it
class inputevnt_feld{
public:
char* call_on;
v8::Persistent<v8::Function> func;
};
int entvcount = -1;
vector<inputevnt_feld> event_calls; //this is pretty much a array of events that we can call later
// in js looks like this "AddInputEvent("string", function);"
void AddInputEvent( const v8::FunctionCallbackInfo<v8::Value>& args ) {
v8::HandleScope handle_scope(args.GetIsolate());
//gotta make sure that we ain't letting in some trojan horse that has nothing in it
if (args[1]->IsFunction() && args[0]->IsString()) {
inputevnt_feld newt;
//converts js string to char array
v8::String::Utf8Value str(args.GetIsolate(), args[0]);
const char* cstr = ToCString(str);
newt.call_on = (char*)cstr;
//here is where the problem is with function casting
v8::Local<v8::Function> callback = v8::Local<v8::Function>::Cast(args[1]);
newt.func = v8::Persistent<v8::Function>::New(args.GetIsolate(), callback);
//push the new stuff in to even array
event_calls.push_back(newt);
//getting vector array size is too much for my smol brain
//so I'ma just do this myself
entvcount++;
//cout << event_calls[entvcount].call_on << endl; //debug
}
}
Most stakeoverflow threads and example code I can find just say to Cast argf with a Local Function; then to throw that in to a Persistent New
Yes, that's correct. If you know how to read it, the C++ type system is your friend for figuring out the details.
If you look at the definition of v8::PersistentBase<T>::New, you'll see that it takes a T* (for its template type T). If you look at the v8::Local<T> class, you'll see that a way to get a T* from it is to use its operator*. That leads to:
v8::Local<v8::Function> callback = ...Cast(args[1]);
... = v8::Persistent<v8::Function>::New(..., *callback);
Alternatively, you can use the Persistent constructor directly, and pass it the Local without dereferencing it first:
v8::Local<v8::Function> callback = ...Cast(args[1]);
... = v8::Persistent<v8::Function>(..., callback);
Both options are entirely equivalent. Personally I'd prefer the latter as it takes slightly fewer characters to spell out, but that's really the only difference.
(Your current code as posted does something else: it ignores the result of the cast and passes the original args[1] directly to Persistent::New -- that's not going to work.)

How can flex return multiple terminals at one time

In order to make my question easy to understand I want to use the following example:
The following code is called nonblock do-loop in fortran language
DO 20 I=1, N ! line 1
DO 20 J=1, N ! line 2
! more codes
20 CONTINUE ! line 4
Pay attention that the label 20 at line 4 means the end of both the inner do-loop and the outer do-loop.
I want my flex program to parse the feature correctly: when flex reads the label 20, it will return ENDDO terminal twice.
Firstly, because I also use bison, so every time bison calls yylex() to get one terminal. If I can ask bison to get terminals from yylex() in some cases, and from another function in other cases, maybe I could solve this problem, however, I got no idea here then.
Of course there are some workarounds, for eample, I can use flex's start condition but I don't think it is a good solution. So I ask if there's any way to solve my question without a workaround?
It is easy enough to modify the lexical scanner produced by (f)lex to implement a token queue, but that is not necessarily the optimal solution. (See below for a better solution.) (Also, it is really not clear to me that for your particular problem, fabricating the extra token in the lexer is truly appropriate.)
The general approach is to insert code at the top of the yylex function, which you can do by placing the code immediately after the %% line and before the first rule. (The code must be indented so that it is not interpreted as a rule.) For non-reentrant scanners, this will typically involve the use of a local static variable to hold the queue. For a simple but dumb example, using the C API but compiling with C++ so as to have access to the C++ standard library:
%%
/* This code will be executed each time `yylex` is called, before
* any generated code. It may include declarations, even if compiled
* with C89.
*/
static std::deque<int> tokenq;
if (!tokenq.empty()) {
int token = tokenq.front();
tokenq.pop_front();
return token;
}
[[:digit:]]+ { /* match a number and return that many HELLO tokens */
int n = atoi(yytext);
for (int i = 0; i < n; ++i)
tokenq.push_back(HELLO);
}
The above code makes no attempt to provide a semantic value for the queued tokens; you could achieve that using something like a std::queue<std::pair<int, YYSTYPE>> for the token queue, but the fact that YYSTYPE is typically a union will make for some complications. Also, if that were the only reason to use the token queue, it is obvious that it could be replaced with a simple counter, which would be much more efficient. See, for example, this answer which does something vaguely similar to your question (and take note of the suggestions in Note 1 of that answer).
Better alternative: Use a push parser
Although the token queue solution is attractive and simple, it is rarely the best solution. In most cases, code will be clearer and easier to write if you request bison to produce a "push parser". With a push parser, the parser is called by the lexer every time a token is available. This makes it trivial to return multiple tokens from a lexer action; you just call the parser for each token. Similarly, if a rule doesn't produce any tokens, it simply fails to call the parser. In this model, the only lexer action which actually returns is the <<EOF>> rule, and it only does so after calling the parser with the END token to indicate that parsing is complete.
Unfortunately, the interface for push parsers is not only subject to change, as that manual link indicates; it is also very badly documented. So here is a simple but complete example which shows how it is done.
The push parser keeps its state in a yypstate structure, which needs to be passed to the parser on each call. Since the lexer is called only once for each input file, it is reasonable for the lexer to own that structure, which can be done as above with a local static variable [Note 1]: the parser state is initialized when yylex is called, and the EOF rule deletes the parser state in order to reclaim whatever memory it is using.
It is usually most convenient to build a reentrant push parser, which means that the parser does not rely on the global yylval variable [Note 2]. Instead, a pointer to the semantic value must be provided as an additional argument to yypush_parse. If your parser doesn't refer to the semantic value for the particular token type, you can provide NULL for this argument. Or, as in the code below, you can use a local semantic value variable in the lexer. It is not necessary that every call to the push parser provide the same pointer. In all, the changes to the scanner definition are minimal:
%%
/* Initialize a parser state object */
yypstate* pstate = yypstate_new();
/* A semantic value which can be sent to the parser on each call */
YYSTYPE yylval;
/* Some example scanner actions */
"keyword" { /* Simple keyword which just sends a value-less token */
yypush_parse(pstate, TK_KEYWORD, NULL); /* See Note 3 */
}
[[:digit:]]+ { /* Token with a semantic value */
yylval.num = atoi(yytext);
yypush_parse(pstate, TK_NUMBER, &yylval);
}
"dice-roll" { /* sends three random numbers */
for (int i = 0; i < 2; ++i) {
yylval.num = rand() % 6;
yypush_parse(pstate, TK_NUMBER, &yylval);
}
<<EOF>> { /* Obligatory EOF rule */
/* Send the parser the end token (0) */
int status = yypush_parse(pstate, 0, NULL);
/* Free the pstate */
yypstate_delete(pstate);
/* return the parser status; 0 is success */
return status;
}
In the parser, not much needs to be changed at all, other than adding the necessary declarations: [Note 4]
%define api.pure full
%define api.push-pull push
Notes
If you were building a reentrant lexer as well, you would use the extra data section of the lexer state object instead of static variables.
If you are using location objects in your parser to track source code locations, this also applies to yylloc.
The example code does not do a good job of detecting errors, since it doesn't check return codes from the calls to yypush_parse. One solution I commonly use is some variant on the macro SEND:
#define SEND(token) do { \
int status = yypush_parse(pstate, token, &yylval); \
if (status != YYPUSH_MORE) { \
yypstate_delete(pstate); \
return status; \
} \
} while (0)
It's also possible to use a goto to avoid the multiple instances of the yypstate_delete and return. YMMV.
You may have to modify the prototype of yyerror. If you are using locations and/or providing extra parameters to the push_parser, the location object and/or the extra parameters will also be present in the yyerror call. (The error string is always the last parameter.) For whatever reason, the parser state object is not provided to yyerror, which means that the yyerror function no longer has access to variables such as yych, which are now members of the yypstate structure rather than being global variables, so if you use these variables in your error reporting (which is not really recommended practice), then you will have to find an alternative solution.
Thanks to one of my friends, he provide a way to achieve
If I can ask bison to get terminals from yylex() in some cases, and from another function in other cases
In flex generated flex.cpp code, there is a macro
/* Default declaration of generated scanner - a define so the user can
* easily add parameters.
*/
#ifndef YY_DECL
#define YY_DECL_IS_OURS 1
extern int yylex (void);
#define YY_DECL int yylex (void)
#endif /* !YY_DECL */
so I can "rename" flex's yylex() function to another function like pure_yylex().
So my problem is solved by:
push all terminals I want to give bison to a global vector<int>
implement a yylex() function by myself, when bison call yylex(), this function will firstly try to get terminals from a that global vector<int>
if vector<int> is empty, yylex() calls pure_yylex(), and flex starts to work

Is there a way to make a moved object "invalid"?

I've some code that moves an object into another object. I won't need the original, moved object anymore in the upper level. Thus move is the right choice I think.
However, thinking about safety I wonder if there is a way to invalidate the moved object and thus preventing undefined behaviour if someone accesses it.
Here is a nice example:
// move example
#include <utility> // std::move
#include <vector> // std::vector
#include <string> // std::string
int main () {
std::string foo = "foo-string";
std::string bar = "bar-string";
std::vector<std::string> myvector;
myvector.push_back (foo); // copies
myvector.push_back (std::move(bar)); // moves
return 0;
}
The description says:
The first call to myvector.push_back copies the value of foo into the
vector (foo keeps the value it had before the call). The second call
moves the value of bar into the vector. This transfers its content
into the vector (while bar loses its value, and now is in a valid but
unspecified state).
Is there a way to invalidate bar, such that access to it will cause a compiler error? Something like:
myvector.push_back (std::move(bar)); // moves
invalidate(bar); //something like bar.end() will then result in a compiler error
Edit: And if there is no such thing, why?
Accessing the moved object is not undefined behavior. The moved object is still a valid object, and the program may very well want to continue using said object. For example,
template< typename T >
void swap_by_move(T &a, T &b)
{
using std::move;
T c = move(b);
b = move(a);
a = move(c);
}
The bigger picture answer is because moving or not moving is a decision made at runtime, and giving a compile-time error is a decision made at compile time.
foo(bar); // foo might move or not
bar.baz(); // compile time error or not?
It's not going to work.. you can approximate in compile time analysis, but then it's going to be really difficult for developers to either not get an error or making anything useful in order to keep a valid program or the developer has to make annoying and fragile annotations on functions called to promise not to move the argument.
To put it a different way, you are asking about having a compile time error if you use an integer variable that contains the value 42. Or if you use a pointer that contains a null pointer value. You might be succcessful in implementing an approximate build-time code convention checker using clang the analysis API, however, working on the CFG of the C++ AST and erroring out if you can't prove that std::move has not been called till a given use of a variable.
Move semantics works like that so you get an object in any it's correct state. Correct state means that all fields have correct value, and all internal invariants are still good. That was done because after move you don't actually care about contents of moved object, but stuff like resource management, assignments and destructors should work OK.
All STL classes (and all classed with default move constructor/assignment) just swap it's content with new one, so both states are correct, and it's very easy to implement, fast, and convinient enough.
You can define your class that has isValid field that's generally true and on move (i. e. in move constructor / move assignment) sets that to false. Then your object will have correct state I am invalid. Just don't forget to check it where needed (destructor, assignment etc).
That isValid field can be either one pointer having null value. The point is: you know, that object is in predictable state after move, not just random bytes in memory.
Edit: example of String:
class String {
public:
string data;
private:
bool m_isValid;
public:
String(string const& b): data(b.data), isValid(true) {}
String(String &&b): data(move(b.data)) {
b.m_isValid = false;
}
String const& operator =(String &&b) {
data = move(b.data);
b.m_isValid = false;
return &this;
}
bool isValid() {
return m_isValid;
}
}

Add a mathematical operation to standard TCL ones

As you know TCL has some mathematical functions such as sin, cos, and hypot that are called in expr command with () braces as follows:
puts [expr sin(1.57)]
Now how can I add a function using TCL library functions so that it was called exactly the same way, and was doing something that a certain proc defines.
I would like to clarify my question. Say there is a proc (string) as follows:
proc add { a b } { return [expr $a+$b] } ;# string of a proc
Also I have a TCL interpreter in my C++ code. Now I want get the string of a proc and runtime register a function called add into the tcl::mathfunc namespace (I guess I should use Tcl_CreateObjCommand) so that I could call the following:
puts [expr add(1.57, 1.43)]
How this can be done. Could you please write a simple example. I could not find any example in TCL documentation and in books as well which describe the usage of this command.
Creating a function from C isn't too hard. To do it, you've got to write an implementation of a command that will perform the operation, and register that implementation as a command in the correct namespace. (In 8.4 and before, functions were done with a separate interface that was quite a bit nastier to use; the mechanism was wholly overhauled in 8.5.)
Command Implementation
Note that the signature is defined, and the ignored parameter is not used here. (It's really a void * — great when you're wanting to do things like binding a command to an object — but it simply isn't needed for doing an addition.)
static int AddCmd(ClientData ignored, Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]) {
double x, y, sum;
/* First, check number of arguments: command name is objv[0] always */
if (objc != 3) {
Tcl_WrongNumArgs(interp, 1, objv, "x y");
return TCL_ERROR;
}
/* Get our arguments as doubles */
if ( Tcl_GetDoubleFromObj(interp, objv[1], &x) != TCL_OK ||
Tcl_GetDoubleFromObj(interp, objv[2], &y) != TCL_OK) {
return TCL_ERROR;
}
/* Do the real operation */
sum = x + y;
/* Pass the result out */
Tcl_SetObjResult(interp, Tcl_NewDoubleObj(sum));
return TCL_OK;
}
Don't worry about the fact that it's allocating a value here; Tcl's got a very high performance custom memory manager that makes that a cheap operation.
Command Registration
This is done usually inside an initialization function that is registered as part of a Tcl package definition or which is called as part of initialization of the overall application. You can also do it directly if you are calling Tcl_CreateInterp manually. Which you do depends on how exactly how you are integrating with Tcl, and that's quite a large topic of its own. So I'll show how to create an initialization function; that's usually a good start in all scenarios.
int Add_Init(Tcl_Interp *interp) {
/* Use the fully-qualified name */
Tcl_CreateObjCommand(interp, "::tcl::mathfunc::add", AddCmd, NULL, NULL);
return TCL_OK;
}
The first NULL is the value that gets passed through as the first (ClientData) parameter to the implementation. The second is a callback to dispose of the ClientData (or NULL if it needs no action, as here).
Doing all this from C++ is also quite practical, but remember that Tcl is a C library, so they have to be functions (not methods, not without an adapter) and they need C linkage.
To get the body of a procedure from C (or C++), by far the easiest mechanism is to use Tcl_Eval to run a simple script to run info body theCmdName. Procedure implementations are very complex indeed, so the interface to them is purely at the script level (unless you actually entangle yourself far more with Tcl than is really wise).

Resources