Hi I'm currently trying to learn leetcode, and I have a question about the spacetime complexity of this solution.
def twoSum(self, nums: List[int], target: int) -> List[int]:
# Brute force method.
ans = []
# Loop over the array at i to nums.length - 1
for i in range(len(nums) - 1):
# Loop over again at j = i + 1 to nums.length
for j in range(i + 1, len(nums)):
# Compare nums[i] + nums[j]
num1 = nums[i]
num2 = nums[j]
# If it equals target return i, j
if ( num1 + num2 ) == target:
ans = [i, j]
return ans
I want to think that it is O(n) because of num1 and num2 being set in the loop. What is the space complexity of this solution and what is an easy way to know? What can I do to improve the space-time complexity(I know this is not the optimal solution)?
I appreciate any help, thanks!
Related
There is already a topic about this task, but I'd like to ask about my specific approach.
The task is:
Let A be a non-empty array consisting of N integers.
The abs sum of two for a pair of indices (P, Q) is the absolute value
|A[P] + A[Q]|, for 0 ≤ P ≤ Q < N.
For example, the following array A:
A[0] = 1 A1 = 4 A[2] = -3 has pairs of indices (0, 0), (0,
1), (0, 2), (1, 1), (1, 2), (2, 2). The abs sum of two for the pair
(0, 0) is A[0] + A[0] = |1 + 1| = 2. The abs sum of two for the pair
(0, 1) is A[0] + A1 = |1 + 4| = 5. The abs sum of two for the pair
(0, 2) is A[0] + A[2] = |1 + (−3)| = 2. The abs sum of two for the
pair (1, 1) is A1 + A1 = |4 + 4| = 8. The abs sum of two for the
pair (1, 2) is A1 + A[2] = |4 + (−3)| = 1. The abs sum of two for
the pair (2, 2) is A[2] + A[2] = |(−3) + (−3)| = 6. Write a function:
def solution(A)
that, given a non-empty array A consisting of N integers, returns the
minimal abs sum of two for any pair of indices in this array.
For example, given the following array A:
A[0] = 1 A1 = 4 A[2] = -3 the function should return 1, as
explained above.
Given array A:
A[0] = -8 A1 = 4 A[2] = 5 A[3] =-10 A[4] = 3 the
function should return |(−8) + 5| = 3.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [1..100,000]; each element of array A
is an integer within the range [−1,000,000,000..1,000,000,000].
The official solution is O(N*M^2), but I think it could be solved in O(N).
My approach is to first get rid of duplicates and sort the array. Then we check both ends and sompare the abs sum moving the ends by one towards each other. We try to move the left end, the right one or both. If this doesn't improve the result, our sum is the lowest. My code is:
def solution(A):
A = list(set(A))
n = len(A)
A.sort()
beg = 0
end = n - 1
min_sum = abs(A[beg] + A[end])
while True:
min_left = abs(A[beg+1] + A[end]) if beg+1 < n else float('inf')
min_right = abs(A[beg] + A[end-1]) if end-1 >= 0 else float('inf')
min_both = abs(A[beg+1] + A[end-1]) if beg+1 < n and end-1 >= 0 else float('inf')
min_all = min([min_left, min_right, min_both])
if min_sum <= min_all:
return min_sum
if min_left == min_all:
beg += 1
min_sum = min_left
elif min_right == min_all:
end -= 1
min_sum = min_right
else:
beg += 1
end -= 1
min_sum = min_both
It passes almost all of the tests, but not all. Is there some bug in my code or the approach is wrong?
EDIT:
After the aka.nice answer I was able to fix the code. It scores 100% now.
def solution(A):
A = list(set(A))
n = len(A)
A.sort()
beg = 0
end = n - 1
min_sum = abs(A[beg] + A[end])
while beg <= end:
min_left = abs(A[beg+1] + A[end]) if beg+1 < n else float('inf')
min_right = abs(A[beg] + A[end-1]) if end-1 >= 0 else float('inf')
min_all = min(min_left, min_right)
if min_all < min_sum:
min_sum = min_all
if min_left <= min_all:
beg += 1
else:
end -= 1
return min_sum
Just take this example for array A
-11 -5 -2 5 6 8 12
and execute your algorithm step by step, you get a premature return:
beg=0
end=6
min_sum=1
min_left=7
min_right=3
min_both=3
min_all=3
return min_sum
though there is a better solution abs(5-5)=0.
Hint: you should check the sign of A[beg] and A[end] to decide whether to continue or exit the loop. What to do if both >= 0, if both <= 0, else ?
Note that A.sort() has a non neglectable cost, likely O(N*log(N)), it will dominate the cost of the solution you exhibit.
By the way, what is M in the official cost O(N*M^2)?
And the link you provide is another problem (sum all the elements of A or their opposite).
Can someone please explain or comment me this code for Booth's Algorithm for Lexicographically minimal string rotation from wikipedia (https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation#Booth.27s_Algorithm)?
def least_rotation(S: str) -> int:
"""Booth's algorithm."""
S += S # Concatenate string to it self to avoid modular arithmetic
f = [-1] * len(S) # Failure function
k = 0 # Least rotation of string found so far
for j in range(1, len(S)):
sj = S[j]
i = f[j - k - 1]
while i != -1 and sj != S[k + i + 1]:
if sj < S[k + i + 1]:
k = j - i - 1
i = f[i]
if sj != S[k + i + 1]: # if sj != S[k+i+1], then i == -1
if sj < S[k]: # k+i+1 = k
k = j
f[j - k] = -1
else:
f[j - k] = i + 1
return k
I am lost with the indices and the k etc. What does it mean, why is there [j - k - 1] indexing etc.?
Thanks!
I'm solving the longest progression problem in Google kick start 2021 Round B using python.
Here is the link to the problem: https://codingcompetitions.withgoogle.com/kickstart/round/0000000000435a5b
I have written the following code but it seems that there's always the wrong answer in a test case, I have tried all situations as far as I concerned, can someone give me the help that where's the problem in my code, thanks!
def solution(A, N):
i, j = 0, 1
ranges = {}
res = 0
left = {}
right = {}
while j < N:
diff = A[j] - A[i]
while j < N and A[j]-A[i] == (j-i)*diff:
j += 1
ranges[(i, j-1)] = diff
left[i] = (i, j-1)
right[j-1] = (i, j-1)
if j <= N-1 or i > 0:
res = max(res, j-i+1)
else:
res = max(res, j-i)
i = j-1
# check if two ranges can be merged
for i in range(1, N-1):
if i == 1:
if i+1 in left:
l1, r1 = left[i+1]
if A[i+1]-A[i-1] == 2*ranges[left[i+1]]:
res = max(res, r1-l1+3)
elif i == N-2:
if i-1 in right:
l1, r1 = right[i-1]
if A[i + 1] - A[i - 1] == 2 * ranges[right[i - 1]]:
res = max(res, r1 - l1 + 3)
else:
if i+1 in left and i-1 in right and ranges[right[i-1]] == ranges[left[i+1]]:
l1, r1 = right[i - 1]
l2, r2 = left[i+1]
if A[i+1]-A[i-1] == 2*ranges[left[i+1]]:
res = max(r1-l1+r2-l2+3, res)
return res
if __name__ == "__main__":
T = int(input().strip())
for i in range(T):
N = int(input().strip())
A = list(map(int, input().strip().split(" ")))
res = solution(A, N)
print("Case #{}: {}".format(i+1, res))
The merging logic is incorrect. The code only tries to merge the entire ranges. In a simple failing case
1 2 3 6 5 4
it misses that replacing 6 with 4 would produce 1 2 3 4 5.
Problem: Given two sequences s1 and s2 of '0' and '1'return the shortest sequence that is a subsequence of neither of the two sequences.
E.g. s1 = '011' s2 = '1101' Return s_out = '00' as one possible result.
Note that substring and subsequence are different where substring the characters are contiguous but in a subsequence that needs not be the case.
My question: How is dynamic programming applied in the "Solution Provided" below and what is its time complexity?
My attempt involves computing all the subsequences for each string giving sub1 and sub2. Append a '1' or a '0' to each sub1 and determine if that new subsequence is not present in sub2.Find the minimum length one. Here is my code:
My Solution
def get_subsequences(seq, index, subs, result):
if index == len(seq):
if subs:
result.add(''.join(subs))
else:
get_subsequences(seq, index + 1, subs, result)
get_subsequences(seq, index + 1, subs + [seq[index]], result)
def get_bad_subseq(subseq):
min_sub = ''
length = float('inf')
for sub in subseq:
for char in ['0', '1']:
if len(sub) + 1 < length and sub + char not in subseq:
length = len(sub) + 1
min_sub = sub + char
return min_sub
Solution Provided (not mine)
How does it work and its time complexity?
It looks that the below solution looks similar to: http://kyopro.hateblo.jp/entry/2018/12/11/100507
def set_nxt(s, nxt):
n = len(s)
idx_0 = n + 1
idx_1 = n + 1
for i in range(n, 0, -1):
nxt[i][0] = idx_0
nxt[i][1] = idx_1
if s[i-1] == '0':
idx_0 = i
else:
idx_1 = i
nxt[0][0] = idx_0
nxt[0][1] = idx_1
def get_shortest(seq1, seq2):
len_seq1 = len(seq1)
len_seq2 = len(seq2)
nxt_seq1 = [[len_seq1 + 1 for _ in range(2)] for _ in range(len_seq1 + 2)]
nxt_seq2 = [[len_seq2 + 1 for _ in range(2)] for _ in range(len_seq2 + 2)]
set_nxt(seq1, nxt_seq1)
set_nxt(seq2, nxt_seq2)
INF = 2 * max(len_seq1, len_seq2)
dp = [[INF for _ in range(len_seq2 + 2)] for _ in range(len_seq1 + 2)]
dp[len_seq1 + 1][len_seq2 + 1] = 0
for i in range( len_seq1 + 1, -1, -1):
for j in range(len_seq2 + 1, -1, -1):
for k in range(2):
if dp[nxt_seq1[i][k]][nxt_seq2[j][k]] < INF:
dp[i][j] = min(dp[i][j], dp[nxt_seq1[i][k]][nxt_seq2[j][k]] + 1);
res = ""
i = 0
j = 0
while i <= len_seq1 or j <= len_seq2:
for k in range(2):
if (dp[i][j] == dp[nxt_seq1[i][k]][nxt_seq2[j][k]] + 1):
i = nxt_seq1[i][k]
j = nxt_seq2[j][k]
res += str(k)
break;
return res
I am not going to work it through in detail, but the idea of this solution is to create a 2-D array of every combinations of positions in the one array and the other. It then populates this array with information about the shortest sequences that it finds that force you that far.
Just constructing that array takes space (and therefore time) O(len(seq1) * len(seq2)). Filling it in takes a similar time.
This is done with lots of bit twiddling that I don't want to track.
I have another approach that is clearer to me that usually takes less space and less time, but in the worst case could be as bad. But I have not coded it up.
UPDATE:
Here is is all coded up. With poor choices of variable names. Sorry about that.
# A trivial data class to hold a linked list for the candidate subsequences
# along with information about they match in the two sequences.
import collections
SubSeqLinkedList = collections.namedtuple('SubSeqLinkedList', 'value pos1 pos2 tail')
# This finds the position after the first match. No match is treated as off the end of seq.
def find_position_after_first_match (seq, start, value):
while start < len(seq) and seq[start] != value:
start += 1
return start+1
def make_longer_subsequence (subseq, value, seq1, seq2):
pos1 = find_position_after_first_match(seq1, subseq.pos1, value)
pos2 = find_position_after_first_match(seq2, subseq.pos2, value)
gotcha = SubSeqLinkedList(value=value, pos1=pos1, pos2=pos2, tail=subseq)
return gotcha
def minimal_nonsubseq (seq1, seq2):
# We start with one candidate for how to start the subsequence
# Namely an empty subsequence. Length 0, matches before the first character.
candidates = [SubSeqLinkedList(value=None, pos1=0, pos2=0, tail=None)]
# Now we try to replace candidates with longer maximal ones - nothing of
# the same length is better at going farther in both sequences.
# We keep this list ordered by descending how far it goes in sequence1.
while candidates[0].pos1 <= len(seq1) or candidates[0].pos2 <= len(seq2):
new_candidates = []
for candidate in candidates:
candidate1 = make_longer_subsequence(candidate, '0', seq1, seq2)
candidate2 = make_longer_subsequence(candidate, '1', seq1, seq2)
if candidate1.pos1 < candidate2.pos1:
# swap them.
candidate1, candidate2 = candidate2, candidate1
for c in (candidate1, candidate2):
if 0 == len(new_candidates):
new_candidates.append(c)
elif new_candidates[-1].pos1 <= c.pos1 and new_candidates[-1].pos2 <= c.pos2:
# We have found strictly better.
new_candidates[-1] = c
elif new_candidates[-1].pos2 < c.pos2:
# Note, by construction we cannot be shorter in pos1.
new_candidates.append(c)
# And now we throw away the ones we don't want.
# Those that are on their way to a solution will be captured in the linked list.
candidates = new_candidates
answer = candidates[0]
r_seq = [] # This winds up reversed.
while answer.value is not None:
r_seq.append(answer.value)
answer = answer.tail
return ''.join(reversed(r_seq))
print(minimal_nonsubseq('011', '1101'))
Trying to teach myself ruby - I'm working on Project Euler problem 14 in ruby.
n = 1000000
array = Array.new(n,0)
#array[x] will store the number of steps to get to one if a solution has been found and 0 otherwise. x will equal the starting number. array[0] will be nonsensical for these purposes
i = n-1#We will start at array[n-1] and work down to 1
while i > 1
if array[i] == 0
numstep = 0 #numstep will hold the number of loops that j makes until it gets to 1 or a number that has already been solved
j = i
while j > 1 && (array[j] == 0 || array[j] == nil)
case j%2
when 1 # j is odd
j = 3*j + 1
when 0 # j is even
j = j/2
end
numstep += 1
end
stop = array[j] #if j has been solved, array[j] is the number of steps to j = 1. If j = 1, array[j] = 0
j = i
counter = 0
while j > 1 && (array[j] == 0 || array[j] == nil)
if j < n
array[j] = numstep + stop - counter #numstep + stop should equal the solution to the ith number, to get the jth number we subtract counter
end
case j%2
when 1 #j is odd
j = 3*j+1
when 0 #j is even
j = j/2
end
counter += 1
end
end
i = i-1
end
puts("The longest Collatz sequence starting below #{n} starts at #{array.each_with_index.max[1]} and is #{array.max} numbers long")
This code works fine for n = 100000 and below, but when I go up to n = 1000000, it runs for a short while (until j = 999167 *3 + 1 = 2997502). When it tries access the 2997502th index of array, it throws the error
in '[]': bignum too big to convert into 'long' (RangeError)
on line 27 (which is the while statement:
while j > 1 && (array[j] == 0 || array[j] == nil)
How can I get this to not throw an error? Checking if the array is zero saves code efficiency because it allows you to not recalculate something that's already been done, but if I remove the and statement, it runs and gives the correct answer. I'm pretty sure that the problem is that the index of an array can't be a bignum, but maybe there's a way to declare my array such that it can be? I don't much care about the answer itself; I've actually already solved this in C# - just trying to learn ruby, so I'd like to know why my code is doing this (if I'm wrong about why) and how to fix it.
The code above runs happily for me for any input that produces output in acceptable time. I believe this is because you might experience problems being on 32bit arch, or like. Anyway, the solution of the problem stated would be simple (unless you might run out of memory, which is another possible glitch.)
Array indices are limited, as is follows from the error you got. Cool, let’s use hash instead!
n = 1000000
array = Hash.new(0)
#array[x] will store the number of steps to get to one if a solution has been found and 0 otherwise. x will equal the starting number. arr
i = n-1#We will start at array[n-1] and work down to 1
while i > 1
if array[i].zero?
numstep = 0 #numstep will hold the number of loops that j makes until it gets to 1 or a number that has already been solved
j = i
while j > 1 && array[j].zero?
case j%2
when 1 # j is odd
j = 3*j + 1
when 0 # j is even
j = j/2
end
numstep += 1
end
stop = array[j] #if j has been solved, array[j] is the number of steps to j = 1. If j = 1, array[j] = 0
j = i
counter = 0
while j > 1 && array[j].zero?
if j < n
array[j] = numstep + stop - counter #numstep + stop should equal the solution to the ith number, to get the jth number we
end
case j%2
when 1 #j is odd
j = 3*j+1
when 0 #j is even
j = j/2
end
counter += 1
end
end
i = i-1
end
puts("Longest Collatz below #{n} ##{array.sort_by(&:first).map(&:last).each_with_index.max[1]} is #{arr
Please note, that since I used the hash with initializer, array[i] can’t become nil, that’s why the check is done for zero values only.