How to refactor round method with 3 digits - ruby

I would like to round float numbers like this :
125.212 = 125.250
125.249 = 125.250
125.268 = 125.250
125.280 = 125.275
125.999 = 126.000
I have do a method, how can I refactor it ?
def round_km(n)
n = n * 1000
m = n % 100
if (m <= 25)
"%.3f" % ((n - m + 25) / 1000).round(3)
elsif (m <= 50)
"%.3f" % ((n - m + 50) / 1000).round(3)
elsif (m <= 75)
"%.3f" % ((n - m + 75) / 1000).round(3)
else
"%.3f" % ((n - m + 100) / 1000).round(3)
end
end

I found a better solution :
def round_km(n)
"%.3f" % ((n/0.250).ceil * 0.250)
end

Related

Algorithm for expressing given number as a sum of two squares

My problem is as follows:
I'm given a natural number n and I want to find all natural numbers x and y such that
n = x² + y²
Since this is addition order does not matter so I count (x,y) and (y,x) as one solution.
My initial algorithm is to assume that y>x, for all x compute y²=n-x² and check if y is a natural number using binary search on y².
for(x=1;2*x*x<n;x++)
{
y_squared=n-x*x;
if(isSquare(y_squared)==false)
continue;
//rest of the code
}
Is there any improvement for my algorithm? I already checked if n can have solutions using two squares theorem, but I want to know how many there are.
My algorithm is O(sqrt(n) * log(n) )
Thanks in advance.
You can reduce this to O(sqrt(n)) this way:
all_solutions(n):
x = 0
y = floor(sqrt(n))
while x <= y
if x * x + y * y < n
x++
else if x * x + y * y > n
y--
else
// found a match
print(x, y)
x++
y--
This algorithm will find and print all possible solutions and will always terminate for x <= sqrt(n / 2) and y >= sqrt(n / 2), leading to at most sqrt(n / 2) + (sqrt(n) - sqrt(n / 2)) = sqrt(n) iterations being performed.
A variation of Paul's, keeping track of the sum of squares and adjusting it just with additions/subtractions:
Pseudo-code: (evaluate x++ + x and y-- + y left-to-right, or do it like in the Python code below)
x = 0
y = floor(sqrt(n))
sum = y * y
while x <= y
if sum < n
sum += x++ + x
else if sum > n
sum -= y-- + y
else
print(x, y)
sum += 2 * (++x - y--)
Java:
static void allSolutions(int n) {
int x = 0, y = (int) Math.sqrt(n), sum = y * y;
while (x <= y) {
if (sum < n) {
sum += x++ + x;
} else if (sum > n) {
sum -= y-- + y;
} else {
System.out.println(x + " " + y);
sum += 2 * (++x - y--);
}
}
}
Python:
from math import isqrt
def all_solutions(n):
x = 0
y = isqrt(n)
sum = y ** 2
while x <= y:
if sum < n:
x += 1
sum += 2 * x - 1
elif sum > n:
sum -= 2 * y - 1
y -= 1
else:
# found a match
print(x, y)
x += 1
sum += 2 * (x - y)
y -= 1
Demo:
>>> all_solutions(5525)
7 74
14 73
22 71
25 70
41 62
50 55

Solving Project Euler #12 with Matlab

I am trying to solve Problem #12 of Project Euler with Matlab and this is what I came up with to find the number of divisors of a given number:
function [Divisors] = ND(n)
p = primes(n); %returns a row vector containing all the prime numbers less than or equal to n
i = 1;
count = 0;
Divisors = 1;
while n ~= 1
while rem(n, p(i)) == 0 %rem(a, b) returns the remainder after division of a by b
count = count + 1;
n = n / p(i);
end
Divisors = Divisors * (count + 1);
i = i + 1;
count = 0;
end
end
After this, I created a function to evaluate the number of divisors of the product n * (n + 1) / 2 and when this product achieves a specific limit:
function [solution] = Solution(limit)
n = 1;
product = 0;
while(product < limit)
if rem(n, 2) == 0
product = ND(n / 2) * ND(n + 1);
else
product = ND(n) * ND((n + 1) / 2);
end
n = n + 1;
end
solution = n * (n + 1) / 2;
end
I already know the answer and it's not what comes back from the function Solution. Could someone help me find what's wrong with the coding.
When I run Solution(500) (500 is the limit specified in the problem), I get 76588876, but the correct answer should be:
76576500.
The trick is quite simple while it also bothering me for a while: The iteration in you while loop is misplaced, which would cause the solution a little bigger than the true answer.
function [solution] = Solution(limit)
n = 1;
product = 0;
while(product < limit)
n = n + 1; %%%But Here
if rem(n, 2) == 0
product = ND(n / 2) * ND(n + 1);
else
product = ND(n) * ND((n + 1) / 2);
end
%n = n + 1; %%%Not Here
end
solution = n * (n + 1) / 2;
end
The output of Matlab 2015b:
>> Solution(500)
ans =
76576500

What sort of time complexity would be required to solve the RSA Factoring Challenge?

Although the challenge ended a long time ago, I'm kinda bored so I decided to try to factorise some of the numbers.
I initially had an O(n) algorithm, but then, I decided to research big O notation.
Apparently (I could be wrong), O(n) algorithms and O(2n) algorithms basically have the same running time. So do O(n) and O(4n) algorithms. In fact, O(n) and O(cn) algorithms (where c is an integer) essentially have the same running time.
So now, I have an O(8n) algorithm, but it isn't quick enough for 77-bit numbers.
What sort of time complexity would be required to factorise the first few RSA numbers (in under 5-ish minutes)?
My O(8n) algorithm:
import math
num = int(input())
sq = math.sqrt(num)
if num % 2 == 0:
print(2, int(num / 2))
elif sq % 1 == sq:
print(int(sq), int(sq))
else:
sq = round(sq)
a = 3
b = sq + (1 - (sq % 2))
c = ((b + 1) / 2)
d = ((b + 1) / 2)
c -= (1 - (c % 2))
d += (1 - (d % 2))
e = ((c + 1) / 2)
f = ((c + 1) / 2)
e -= (1 - (e % 2))
f += (1 - (f % 2))
g = ((d + 1) / 2) + d
h = ((d + 1) / 2) + d
g -= (1 - (g % 2))
h += (1 - (h % 2))
while a <= sq and num % a != 0 and b > 2 and num % b != 0 and c <= sq and num % c != 0 and d > 2 and num % d != 0 and e <= sq and num % e != 0 and f > 2 and num % f != 0 and g <= sq and num % g != 0 and h > 2 and num % h != 0:
a += 2
b -= 2
c += 2
d -= 2
e += 2
f -= 2
g += 2
h -= 2
if num % a == 0:
print(a, int(num / a))
elif num % b == 0:
print(b, int(num / b))
elif num % c == 0:
print(c, int(num / c))
elif num % d == 0:
print(d, int(num / d))
elif num % e == 0:
print(e, int(num / e))
elif num % f == 0:
print(f, int(num / f))
elif num % g == 0:
print(g, int(num / g))
elif num % h == 0:
print(h, int(num / h))
Your algorithm is poorly-implemented trial division. Throw it away.
Here is my basic prime-number library, using the Sieve of Eratosthenes to enumerate prime numbers, the Miller-Rabin algorithm to recognize primes, and wheel factorization followed by Pollard's rho algorithm to factor composites, which I leave to you to translate to Python:
function primes(n)
i, p, ps, m := 0, 3, [2], n // 2
sieve := makeArray(0..m-1, True)
while i < m
if sieve[i]
ps := p :: ps # insert at head of list
for j from (p*p-3)/2 to m step p
sieve[i] := False
i, p := i+1, p+2
return reverse(ps)
function isPrime(n, k=5)
if n < 2 then return False
for p in [2,3,5,7,11,13,17,19,23,29]
if n % p == 0 then return n == p
s, d = 0, n-1
while d % 2 == 0
s, d = s+1, d/2
for i from 0 to k
x = powerMod(randint(2, n-1), d, n)
if x == 1 or x == n-1 then next i
for r from 1 to s
x = (x * x) % n
if x == 1 then return False
if x == n-1 then next i
return False
return True
function factors(n, limit=10000)
wheel := [1,2,2,4,2,4,2,4,6,2,6]
w, f, fs := 0, 2, []
while f*f <= n and f < limit
while n % f == 0
fs, n := f :: fs, n / f
f, w := f + wheel[w], w+1
if w = 11 then w = 3
if n == 1 return fs
h, t, g, c := 1, 1, 1, 1
while not isPrime(n)
repeat
h := (h*h+c) % n # the hare runs
h := (h*h+c) % n # twice as fast
t := (t*t+c) % n # as the tortoise
g := gcd(t-h, n)
while g == 1
if isPrime(g)
while n % g == 0
fs, n := g :: fs, n / g
h, t, g, c := 1, 1, 1, c+1
return sort(n :: fs)
function powerMod(b, e, m)
x := 1
while e > 0
if e%2 == 1
x, e := (x*b)%m, e-1
else b, e := (b*b)%m, e//2
return x
function gcd(a, b)
if b == 0 then return a
return gcd(b, a % b)
Properly implemented, that algorithm should factor your 79-bit number nearly instantly.
To factor larger numbers, you will have to work harder. Look up "elliptic curve factorization" and "self-initializing quadratic sieve" to find factoring algorithms that you can implement yourself.

Something wrong with my PollardP1_rho code but I don't know how to fix it

I tried to use MillerRabin + PollardP1_rho method to factorize an integer into primes in Python3 for reducing time complexity as much as I could.But it failed some tests,I knew where the problem was.But I am a tyro in algorithm, I didn't know how to fix it.So I will put all relative codes here.
import random
def gcd(a, b):
"""
a, b: integers
returns: a positive integer, the greatest common divisor of a & b.
"""
if a == 0:
return b
if a < 0:
return gcd(-a, b)
while b > 0:
c = a % b
a, b = b, c
return a
def mod_mul(a, b, n):
# Calculate a * b % n iterately.
result = 0
while b > 0:
if (b & 1) > 0:
result = (result + a) % n
a = (a + a) % n
b = (b >> 1)
return result
def mod_exp(a, b, n):
# Calculate (a ** b) % n iterately.
result = 1
while b > 0:
if (b & 1) > 0:
result = mod_mul(result, a, n)
a = mod_mul(a, a, n)
b = (b >> 1)
return result
def MillerRabinPrimeCheck(n):
if n in {2, 3, 5, 7, 11}:
return True
elif (n == 1 or n % 2 == 0 or n % 3 == 0 or n % 5 == 0 or n % 7 == 0 or n % 11 == 0):
return False
k = 0
u = n - 1
while not (u & 1) > 0:
k += 1
u = (u >> 1)
random.seed(0)
s = 5 #If the result isn't right, then add the var s.
for i in range(s):
x = random.randint(2, n - 1)
if x % n == 0:
continue
x = mod_exp(x, u, n)
pre = x
for j in range(k):
x = mod_mul(x, x, n)
if (x == 1 and pre != 1 and pre != n - 1):
return False
pre = x
if x != 1:
return False
return True
def PollardP1_rho(n, c):
'''
Consider c as a constant integer.
'''
i = 1
k = 2
x = random.randrange(1, n - 1) + 1
y = x
while 1:
i += 1
x = (mod_mul(x, x, n) + c) % n
d = gcd(y - x, n)
if 1 < d < n:
return d
elif x == y:
return n
elif i == k:
y = x
k = (k << 1)
result = []
def PrimeFactorsListGenerator(n):
if n <= 1:
pass
elif MillerRabinPrimeCheck(n) == True:
result.append(n)
else:
a = n
while a == n:
a = PollardP1_rho(n, random.randrange(1,n - 1) + 1)
PrimeFactorsListGenerator(a)
PrimeFactorsListGenerator(n // a)
When I tried to test this:
PrimeFactorsListGenerator(4)
It didn't stop and looped this:
PollardP1_rho(4, random.randrange(1,4 - 1) + 1)
I have already tested the functions before PollardP1_rho and they work normally,so I know the function PollardP1_rho cannot deal the number 4 correctly,also the number 5.How can I fix that?
I have solved it myself.
There is 1 mistake in the code.
I should not use a var 'result' outside of the function as a global var,I should define in the function and use result.extend() to ensure the availability of the whole recursive process.So I rewrote PollardP1_rho(n, c) and PrimeFactorsListGenerator(n):
def Pollard_rho(x, c):
'''
Consider c as a constant integer.
'''
i, k = 1, 2
x0 = random.randint(0, x)
y = x0
while 1:
i += 1
x0 = (mod_mul(x0, x0, x) + c) % x
d = gcd(y - x0, x)
if d != 1 and d != x:
return d
if y == x0:
return x
if i == k:
y = x0
k += k
def PrimeFactorsListGenerator(n):
result = []
if n <= 1:
return None
if MillerRabinPrimeCheck(n):
return [n]
p = n
while p >= n:
p = Pollard_rho(p, random.randint(1, n - 1))
result.extend(PrimeFactorsListGenerator(p))
result.extend(PrimeFactorsListGenerator(n // p))
return result
#PrimeFactorsListGenerator(400)
#PrimeFactorsListGenerator(40000)
There is an additional tip: You don't need to write a function mod_mul(a, b, n) at all, using Python built-in pow(a, b, n) will do the trick and it is fully optimized.

How to find ith item in zigzag ordering?

A question last week defined the zig zag ordering on an n by m matrix and asked how to list the elements in that order.
My question is how to quickly find the ith item in the zigzag ordering? That is, without traversing the matrix (for large n and m that's much too slow).
For example with n=m=8 as in the picture and (x, y) describing (row, column)
f(0) = (0, 0)
f(1) = (0, 1)
f(2) = (1, 0)
f(3) = (2, 0)
f(4) = (1, 1)
...
f(63) = (7, 7)
Specific question: what is the ten billionth (1e10) item in the zigzag ordering of a million by million matrix?
Let's assume that the desired element is located in the upper half of the matrix. The length of the diagonals are 1, 2, 3 ..., n.
Let's find the desired diagonal. It satisfies the following property:
sum(1, 2 ..., k) >= pos but sum(1, 2, ..., k - 1) < pos. The sum of 1, 2, ..., k is k * (k + 1) / 2. So we just need to find the smallest integer k such that k * (k + 1) / 2 >= pos. We can either use a binary search or solve this quadratic inequality explicitly.
When we know the k, we just need to find the pos - (k - 1) * k / 2 element of this diagonal. We know where it starts and where we should move(up or down, depending on the parity of k), so we can find the desired cell using a simple formula.
This solution has an O(1) or an O(log n) time complexity(it depends on whether we use a binary search or solve the inequation explicitly in step 2).
If the desired element is located in the lower half of the matrix, we can solve this problem for a pos' = n * n - pos + 1 and then use symmetry to get the solution to the original problem.
I used 1-based indexing in this solution, using 0-based indexing might require adding +1 or -1 somewhere, but the idea of the solution is the same.
If the matrix is rectangular, not square, we need to consider the fact the length of diagonals look this way: 1, 2, 3, ..., m, m, m, .., m, m - 1, ..., 1(if m <= n) when we search for the k, so the sum becomes something like k * (k + 1) / 2 if k <= m and k * (k + 1) / 2 + m * (k - m) otherwise.
import math, random
def naive(n, m, ord, swap = False):
dx = 1
dy = -1
if swap:
dx, dy = dy, dx
cur = [0, 0]
for i in range(ord):
cur[0] += dy
cur[1] += dx
if cur[0] < 0 or cur[1] < 0 or cur[0] >= n or cur[1] >= m:
dx, dy = dy, dx
if cur[0] >= n:
cur[0] = n - 1
cur[1] += 2
if cur[1] >= m:
cur[1] = m - 1
cur[0] += 2
if cur[0] < 0: cur[0] = 0
if cur[1] < 0: cur[1] = 0
return cur
def fast(n, m, ord, swap = False):
if n < m:
x, y = fast(m, n, ord, not swap)
return [y, x]
alt = n * m - ord - 1
if alt < ord:
x, y = fast(n, m, alt, swap if (n + m) % 2 == 0 else not swap)
return [n - x - 1, m - y - 1]
if ord < (m * (m + 1) / 2):
diag = int((-1 + math.sqrt(1 + 8 * ord)) / 2)
parity = (diag + (0 if swap else 1)) % 2
within = ord - (diag * (diag + 1) / 2)
if parity: return [diag - within, within]
else: return [within, diag - within]
else:
ord -= (m * (m + 1) / 2)
diag = int(ord / m)
within = ord - diag * m
diag += m
parity = (diag + (0 if swap else 1)) % 2
if not parity:
within = m - within - 1
return [diag - within, within]
if __name__ == "__main__":
for i in range(1000):
n = random.randint(3, 100)
m = random.randint(3, 100)
ord = random.randint(0, n * m - 1)
swap = random.randint(0, 99) < 50
na = naive(n, m, ord, swap)
fa = fast(n, m, ord, swap)
assert na == fa, "(%d, %d, %d, %s) ==> (%s), (%s)" % (n, m, ord, swap, na, fa)
print fast(1000000, 1000000, 9999999999, False)
print fast(1000000, 1000000, 10000000000, False)
So the 10-billionth element (the one with ordinal 9999999999), and the 10-billion-first element (the one with ordinal 10^10) are:
[20331, 121089]
[20330, 121090]
An analytical solution
In the general case, your matrix will be divided in 3 areas:
an initial triangle t1
a skewed part mid where diagonals have a constant length
a final triangle t2
Let's call p the index of your diagonal run.
We want to define two functions x(p) and y(p) that give you the column and row of the pth cell.
Initial triangle
Let's look at the initial triangular part t1, where each new diagonal is one unit longer than the preceding.
Now let's call d the index of the diagonal that holds the cell, and
Sp = sum(di) for i in [0..p-1]
We have p = Sp + k, with 0 <=k <= d and
Sp = d(d+1)/2
if we solve for d, it brings
d²+d-2p = 0, a quadratic equation where we retain only the positive root:
d = (-1+sqrt(1+8*p))/2
Now we want the highest integer value closest to d, which is floor(d).
In the end, we have
p = d + k with d = floor((-1+sqrt(1+8*p))/2) and k = p - d(d+1)/2
Let's call
o(d) the function that equals 1 if d is odd and 0 otherwise, and
e(d) the function that equals 1 if d is even and 0 otherwise.
We can compute x(p) and y(p) like so:
d = floor((-1+sqrt(1+8*p))/2)
k = p - d(d+1)/2
o = d % 2
e = 1 - o
x = e*d + (o-e)*k
y = o*d + (e-o)*k
even and odd functions are used to try to salvage some clarity, but you can replace
e(p) with 1 - o(p) and have slightly more efficient but less symetric formulaes for x and y.
Middle part
let's consider the smallest matrix dimension s, i.e. s = min (m,n).
The previous formulaes hold until x or y (whichever comes first) reaches the value s.
The upper bound of p such as x(i) <= s and y(i) <= s for all i in [0..p]
(i.e. the cell indexed by p is inside the initial triangle t1) is given by
pt1 = s(s+1)/2.
For p >= pt1, diagonal length remains equal to s until we reach the second triangle t2.
when inside mid, we have:
p = s(s+1)/2 + ds + k with k in [0..s[.
which yields:
d = floor ((p - s(s+1)/2)/s)
k = p - ds
We can then use the same even/odd trick to compute x(p) and y(p):
p -= s(s+1)/2
d = floor (p / s)
k = p - d*s
o = (d+s) % 2
e = 1 - o
x = o*s + (e-o)*k
y = e*s + (o-e)*k
if (n > m)
x += d+e
y -= e
else
y += d+o
x -= o
Final triangle
Using symetry, we can calculate pt2 = m*n - s(s+1)/2
We now face nearly the same problem as for t1, except that the diagonal may run in the same direction as for t1 or in the reverse direction (if n+m is odd).
Using symetry tricks, we can compute x(p) and y(p) like so:
p = n*m -1 - p
d = floor((-1+sqrt(1+8*p))/2)
k = p - d*(d+1)/2
o = (d+m+n) % 2
e = 1 - $o;
x = n-1 - (o*d + (e-o)*k)
y = m-1 - (e*d + (o-e)*k)
Putting all together
Here is a sample c++ implementation.
I used 64 bits integers out of sheer lazyness. Most could be replaced by 32 bits values.
The computations could be made more effective by precomputing a few more coefficients.
A good part of the code could be factorized, but I doubt it is worth the effort.
Since this is just a quick and dirty proof of concept, I did not optimize it.
#include <cstdio> // printf
#include <algorithm> // min
using namespace std;
typedef long long tCoord;
void panic(const char * msg)
{
printf("PANIC: %s\n", msg);
exit(-1);
}
struct tPoint {
tCoord x, y;
tPoint(tCoord x = 0, tCoord y = 0) : x(x), y(y) {}
tPoint operator+(const tPoint & p) const { return{ x + p.x, y + p.y }; }
bool operator!=(const tPoint & p) const { return x != p.x || y != p.y; }
};
class tMatrix {
tCoord n, m; // dimensions
tCoord s; // smallest dimension
tCoord pt1, pt2; // t1 / mid / t2 limits for p
public:
tMatrix(tCoord n, tCoord m) : n(n), m(m)
{
s = min(n, m);
pt1 = (s*(s + 1)) / 2;
pt2 = n*m - pt1;
}
tPoint diagonal_cell(tCoord p)
{
tCoord x, y;
if (p < pt1) // inside t1
{
tCoord d = (tCoord)floor((-1 + sqrt(1 + 8 * p)) / 2);
tCoord k = p - (d*(d + 1)) / 2;
tCoord o = d % 2;
tCoord e = 1 - o;
x = o*d + (e - o)*k;
y = e*d + (o - e)*k;
}
else if (p < pt2) // inside mid
{
p -= pt1;
tCoord d = (tCoord)floor(p / s);
tCoord k = p - d*s;
tCoord o = (d + s) % 2;
tCoord e = 1 - o;
x = o*s + (e - o)*k;
y = e*s + (o - e)*k;
if (m > n) // vertical matrix
{
x -= o;
y += d + o;
}
else // horizontal matrix
{
x += d + e;
y -= e;
}
}
else // inside t2
{
p = n * m - 1 - p;
tCoord d = (tCoord)floor((-1 + sqrt(1 + 8 * p)) / 2);
tCoord k = p - (d*(d + 1)) / 2;
tCoord o = (d + m + n) % 2;
tCoord e = 1 - o;
x = n - 1 - (o*d + (e - o)*k);
y = m - 1 - (e*d + (o - e)*k);
}
return{ x, y };
}
void check(void)
{
tPoint move[4] = { { 1, 0 }, { -1, 1 }, { 1, -1 }, { 0, 1 } };
tPoint pos;
tCoord dir = 0;
for (tCoord p = 0; p != n * m ; p++)
{
tPoint dc = diagonal_cell(p);
if (pos != dc) panic("zot!");
pos = pos + move[dir];
if (dir == 0)
{
if (pos.y == m - 1) dir = 2;
else dir = 1;
}
else if (dir == 3)
{
if (pos.x == n - 1) dir = 1;
else dir = 2;
}
else if (dir == 1)
{
if (pos.y == m - 1) dir = 0;
else if (pos.x == 0) dir = 3;
}
else
{
if (pos.x == n - 1) dir = 3;
else if (pos.y == 0) dir = 0;
}
}
}
};
void main(void)
{
const tPoint dim[] = { { 10, 10 }, { 11, 11 }, { 10, 30 }, { 30, 10 }, { 10, 31 }, { 31, 10 }, { 11, 31 }, { 31, 11 } };
for (tPoint d : dim)
{
printf("Checking a %lldx%lld matrix...", d.x, d.y);
tMatrix(d.x, d.y).check();
printf("done\n");
}
tCoord p = 10000000000;
tMatrix matrix(1000000, 1000000);
tPoint cell = matrix.diagonal_cell(p);
printf("Coordinates of %lldth cell: (%lld,%lld)\n", p, cell.x, cell.y);
}
Results are checked against "manual" sweep of the matrix.
This "manual" sweep is a ugly hack that won't work for a one-row or one-column matrix, though diagonal_cell() does work on any matrix (the "diagonal" sweep becomes linear in that case).
The coordinates found for the 10.000.000.000th cell of a 1.000.000x1.000.000 matrix seem consistent, since the diagonal d on which the cell stands is about sqrt(2*1e10), approx. 141421, and the sum of cell coordinates is about equal to d (121090+20330 = 141420). Besides, it is also what the two other posters report.
I would say there is a good chance this lump of obfuscated code actually produces an O(1) solution to your problem.

Resources