How to divide by infinity in MathCAD - mathcad

Could anyone recommend a proper way to work with infinite values in MathCAD? For example when calculating resistances. If I use the infinity constant I get a floating point error.
w := 314.159 s^-1
C := \infinity F
X.C := 1/wC
I have to use large value for the C (10^10) and cope with the X.C being small and not exactly zero.

I think the Infinit is symbolic concept. Try to use symbolic calculations like that:
In my practice if I know that number may be too small I add TOL to it.

Related

MSE giving negative results in High-Level Synthesis

I am trying to calculate the Mean Squared Error in Vitis HLS. I am using hls::pow(...,2) and divide by n, but all I receive is a negative value for example -0.004. This does not make sense to me. Could anyone point the problem out or have a proper explanation for this??
Besides calculating the mean squared error using hls::pow does not give the same results as (a - b) * (a - b) and for information I am using ap_fixed<> types and not normal float or double precision
Thanks in advance!
It sounds like an overflow and/or underflow issue, meaning that the values reach the sign bit and are interpreted as negative while just be very large.
Have you tried tuning the representation precision or the different saturation/rounding options for the fixed point class? This tuning will depend on the data you're processing.
For example, if you handle data that you know will range between -128.5 and 1023.4, you might need very few fractional bits, say 3 or 4, leaving the rest for the integer part (which might roughly be log2((1023+128)^2)).
Alternatively, if n is very large, you can try a moving average and calculate the mean in small "chunks" of length m < n.
p.s. Getting the absolute value of a - b and store it into an ap_ufixed before the multiplication can already give you one extra bit, but adds an instruction/operation/logic to the algorithm (which might not be a problem if the design is pipelined, but require space if the size of ap_ufixed is very large).

Multiply two numbers whose range is 10^18

There is a variable first_variable which is always a mod of some number, mod_value.
In every step first_variable is multiplied with some number second_variable.
And the range of all three variables is from 1 to 10^18.
For that I build a formula,
first_variable = ((first_variable%mod_value)*(second_variable%mod_value))%mod_value
But this gives a wrong answer,
For example, If first_variable and second_variable is (10^18)-1 and mod_value = 10^18
Please suggest me method, so that first_variable will always give right answer.
Seems you are using a runtime where arithmetic is implemented using 64-bit integers. You can check this using multipliers like 2^32: if their product is 0, my guess is true. In that case, you should switch to an arbitrary long arithmetic implementation, or at least one that is much longer than the current one. E.g. Python supports integers up to 2^1016 (256^127), same for Erlang.
I've seen in comments you use C++. If so, look for GMP library and analogs. Or, if 128 bits is enough, modern GCC support it through own library.
This is basically overflows, so you should either use different value for mod_value (up to 10^9) or limit the range for first value and second value.
Your number is O(10^36) which is O(2^108) which cannot fit in any primitive data type in languages like java or C++. Use BigInt in C++ or Java or use numpy in python to get over it.

given code of function f, how to decide statically if x effects f(x)?

If I have code for some function f (that takes in one input for simplicity), I need to decide if the input x affects the output f(x), i.e, if f is a constant function defined below.
Define f to be constant function if output of f is invariant w.r.t x. This should hold for ALL inputs. So for example, if we have f(x) = 0 power x, it may output 0 for all inputs except for x = 0, where it may output error. So f is not a constant function.
I can only do static analysis of the code and assume the code is Java source for simplicity.
Is this possible?
This is obviously at least as hard as solving the Halting Problem (proof left as an exercise), so the answer is "no", this is not possible.
It is almost certainly possible. In most cases. Where there aren't weird thing going on.
For normal functions, the ordinary, useful kind that actually return values rather than doing their own little thing, yes.
For a simple function, not recursive, no nastiness of that sort, doing it manually, I would probably make the static-analysis equivalent of a sign chart, where I examine the code and determine every value of x that might possibly be a boundary condition or such (e.g. the code has if (x < 0) somewhere in it, so I check the function for values of x near 0). If this sort of attempt is doomed to fail please tell me before I try to use it on something.
Using brute force to grind away at it could work, unless you are working with quadruple precision x values or something similarly-sized, because then brute force could take years. Although at that point its not really static-analysis anymore.
Static-analysis generally really means having a computer tell you by looking at the code, not you looking at it yourself (at least not very much). Algorithms exist for doing this in many languages, wikipedia has such a list, including some free or even open source.
The ultimate proof that something can be done is for it to have been done already.
Since you'd call a non-terminating function non-constant, here's the reduction from your problem to the halting problem:
void does_it_halt(...);
int f(int x) {
if(x == 1) {
does_it_halt();
}
return 0;
}
Asking if f is constant is equivalent to asking if does_it_halt halts. Therefore, what you're asking for is impossible, since the halting problem is undecidable.

How to implement this iteration/convergence step by guessing a value in Matlab?

I have two parameters fL and fV, both functions of T and P. If I make a function called func(T), which takes only T as input, then how do I go about implementing this step in Matlab:
Guess P
if |(fL/fV)-1|<0.0001 % where fL and fV are both functions of T and P
then print P
else P=P*(fL/fV)
Initially it is advised to guess the P in the beginning of the algorithm. All other steps before this involve formula calculation and doesn't involve any converging, so I didn't write all those formulas. The important thing to note is even though we take only T as input for our function, the pressure is guessed in the beginning of the code and is not part of any input by the user.
Thanks!
In order to "guess" P, you can either proceed using a) an educated guess or b) a random guess. So, for example if you were dealing with pressure in the day to day surroundings, 100kPa would be a reasonable guess. A random guess would mean initializing P to a random variable generated over a meaningful domain. So in my example, it could be a random variable uniformly distributed between 90kPa and 110kPa. Which of these approaches you choose depends on your specific problem.
You can code your requirements as follows
minP=90;maxP=110;
P=minP+(maxP-minP)*rand;%# a random guess between 90 & 100
<some code here where you calculate fL and fV
if abs(fL/fV-1)<0.0001
fprintf('%f',P)
else
P=P*fL/fV;
end

Iterative solving for unknowns in a fluids problem

I am a Mechanical engineer with a computer scientist question. This is an example of what the equations I'm working with are like:
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
The situation is this:
I need r to find x, but I need x to find z. I also need x to find f which is a part of finding z. So I guess a value for x, and then I use that value to find r and f. Then I go back and use the value I found for r and f to find x. I keep doing this until the guess and the calculated are the same.
My question is:
How do I get the computer to do this? I've been using mathcad, but an example in another language like C++ is fine.
The very first thing you should do faced with iterative algorithms is write down on paper the sequence that will result from your idea:
Eg.:
x_0 = ..., f_0 = ..., r_0 = ...
x_1 = ..., f_1 = ..., r_1 = ...
...
x_n = ..., f_n = ..., r_n = ...
Now, you have an idea of what you should implement (even if you don't know how). If you don't manage to find a closed form expression for one of the x_i, r_i or whatever_i, you will need to solve one dimensional equations numerically. This will imply more work.
Now, for the implementation part, if you never wrote a program, you should seriously ask someone live who can help you (or hire an intern and have him write the code). We cannot help you beginning from scratch with, eg. C programming, but we are willing to help you with specific problems which should arise when you write the program.
Please note that your algorithm is not guaranteed to converge, even if you strongly think there is a unique solution. Solving non linear equations is a difficult subject.
It appears that mathcad has many abstractions for iterative algorithms without the need to actually implement them directly using a "lower level" language. Perhaps this question is better suited for the mathcad forums at:
http://communities.ptc.com/index.jspa
If you are using Mathcad, it has the functionality built in. It is called solve block.
Start with the keyword "given"
Given
define the guess values for all unknowns
x:=2
f:=3
r:=2
...
define your constraints
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
calculate the solution
find(x, y, z, r, ...)=
Check Mathcad help or Quicksheets for examples of the exact syntax.
The simple answer to your question is this pseudo-code:
X = startingX;
lastF = Infinity;
F = 0;
tolerance = 1e-10;
while ((lastF - F)^2 > tolerance)
{
lastF = F;
X = ?;
R = ?;
F = FunctionOf(X,R);
}
This may not do what you expect at all. It may give a valid but nonsense answer or it may loop endlessly between alternate wrong answers.
This is standard substitution to convergence. There are more advanced techniques like DIIS but I'm not sure you want to go there. I found this article while figuring out if I want to go there.
In general, it really pays to think about how you can transform your problem into an easier problem.
In my experience it is better to pose your problem as a univariate bounded root-finding problem and use Brent's Method if you can
Next worst option is multivariate minimization with something like BFGS.
Iterative solutions are horrible, but are more easily solved once you think of them as X2 = f(X1) where X is the input vector and you're trying to reduce the difference between X1 and X2.
As the commenters have noted, the mathematical aspects of your question are beyond the scope of the help you can expect here, and are even beyond the help you could be offered based on the detail you posted.
However, I think that even if you understood the mathematics thoroughly there are computer science aspects to your question that should be addressed.
When you write your code, try to make organize it into functions that depend only upon the parameters you are passing in to a subroutine. So write a subroutine that takes in values for y, z, and r and returns you x. Make another that takes in f,L,D,G and returns z. Now you have testable routines that you can check to make sure they are computing correctly. Check the input values to your routines in the routines - for instance in computing x you will get a divide by 0 error if you pass in a 0 for r. Think about how you want to handle this.
If you are going to solve this problem interatively you will need a method that will decide, based on the results of one iteration, what the values for the next iteration will be. This also should be encapsulated within a subroutine. Now if you are using a language that allows only one value to be returned from a subroutine (which is most common computation languages C, C++, Java, C#) you need to package up all your variables into some kind of data structure to return them. You could use an array of reals or doubles, but it would be nicer to choose to make an object and then you can reference the variables by their name and not their position (less chance of error).
Another aspect of iteration is knowing when to stop. Certainly you'll do so when you get a solution that converges. Make this decision into another subroutine. Now when you need to change the convergence criteria there is only one place in the code to go to. But you need to consider other reasons for stopping - what do you do if your solution starts diverging instead of converging? How many iterations will you allow the run to go before giving up?
Another aspect of iteration of a computer is round-off error. Mathematically 10^40/10^38 is 100. Mathematically 10^20 + 1 > 10^20. These statements are not true in most computations. Your calculations may need to take this into account or you will end up with numbers that are garbage. This is an example of a cross-cutting concern that does not lend itself to encapsulation in a subroutine.
I would suggest that you go look at the Python language, and the pythonxy.com extensions. There are people in the associated forums that would be a good resource for helping you learn how to do iterative solving of a system of equations.

Resources