I use the following code in an angular app. I used the RxJS map call similar to how array map is used. After reading about RxJS switchmap operator, I'm not sure whether I should use map or switchmap. Should I use switchmap so the observable which is returned from the http call is closed so there is no memory leak?
getPeopleForTypeahead(term: string): Observable<IPersonForTypeahead[]> {
var peopleUrl = `https://localhost:5001/api/peoplesearch?name=${term}`;
return this.http.get<any>(peopleUrl)
.pipe(
map(pl => {
return this.peopleAsFlattened(pl.peopleList).reduce((p, c) => p.concat(c));
}),
catchError(this.handleError('getPeopleForTypeahead', []))
);
}
peopleAsFlattened = (pla: IPeopleList[]) => {
return pla.map(pl => pl.people.map(p => {
return {
id: p.id,
fullName: p.fullNames[0].firstName + " " + p.fullNames[0].lastName
};
}));
}
map and switchMap have completely different purposes:
map - transform the shape of an emission
switchMap - subscribe to an observable and emit its emissions into the stream
map
Use map when you want transform the shape of each emission. Ex: emit the user name property, instead of the entire user object:
userName$: Observable<string> = this.service.getUser(123).pipe(
map(user => user.name)
);
switchMap
Use switchMap when you want to map an emission to another observable and emit its emissions. Ex: You have an observable of some id and want to emit the resource after fetching it:
user$: Observable<User> = this.userId$.pipe(
switchMap(id => this.service.getUser(id)),
);
When user$ is subscribed to, the user returned from service.getUser(id) is emitted (not the userId string).
switchMap is not interchangeable with the map operator, nor vise versa. Although both of them has to do with mapping (as their names suggest), they have two separate use-cases.
In your particular case, the map operator is the way to go.
When to use switchMap?
You can only use switchMap(cb) when you check all these requirements:
Your callback function, cb, passed into switchMap returns an observable, observable$.
If your cb (callback function) does not return an observable, you should look into operators that don't handle higher-level observables, such as filter and map (what you actually needed); not operators that handle higher-level observables such as concatMap and well, switchMap.
You want to execute your cb sequentially before the next operation down the pipeline (after switchMap) executes.
Maybe you want to run logic inside of cb, and optionally get the return value of cb after executing, so that you can pass it down the pipeline for further processing, for example.
When you want to "discard" what will happen to cb's execution and re-execute cb every time the source observable (the thing that trickles down to switchMap(cb)) emits a new value/notification.
Applying what we hopefully learned, we know that your cb:
pl => {
return this.peopleAsFlattened(pl.peopleList).reduce((p, c) => p.concat(c));
}
returns a plain JavaScript array; not an observable. This takes using switchMap out of the question since it violates the first requirement I made up above.
Hopefully that makes sense. :)
We use switchMap when the source observable is a hot observable. In which case you prefer the behaviour that cancel the succeeding observable when source emits.
In your code, you source is a one-off http call which means it will not emit multiple times and the follow up action is not executing observable but to mutate an array. There is no need to use switchMap
Related
I have a stream of emissions conforming to: Observable<Notice[]>. Each Notice has a property, isVisible$ (Observable<boolean>) that determines whether or not it is on screen in this particular moment. I want to filter this array of notices by whether the most recent value of isVisible$ is true. When a new array of notices occurs, I want to begin the process again. I know this entails using switchMap on the higher order observable stream.
Neither types of observable will ever complete, so using operators like toArray() will not work here. Each isVisible$ stream is guaranteed to emit at least once.
I want the output to also be of Observable<Notice[]>, emitting each time the isVisible$ stream of any of the inner observable predicates updates.
What I have so far does emit the proper values, but the inner pipeline just groups notices together and emits them (via scan, in lieu of toArray), it doesn't buffer to the length of from(notices) and then emit (if that makes sense). This makes the end result of the stream is too busy.
notices.pipe(
switchMap(notices => from(notices).pipe(
mergeMap(notice => notice.isVisible$.pipe(
map(isVisible => ({ notice, isVisible }))
)),
filter(({ isVisible }) => isVisible),
map(({ notice }) => notice),
scan((noticesArr, noticeBeingAddedOrRemoved) => {
if (!noticesArr.find(n => n.identifier === noticeBeingAddedOrRemoved.id)) {
noticesArr.push(noticeBeingAddedOrRemoved);
}
return noticesArr;
}, [])
))
);
Here's a reproducible sample of what I'm working with on StackBlitz.
I've changed it to use zip, which will only emit when each of the isVisible$ observables emit. You could also use combineLatest if you want to emit whenever any of the source observables emit, rathern than waiting for all of them.
I'm a bit confused by the various definitions of an operator in rxjs.
Below I provide some of the definitions:
1 A Pipeable Operator is a function that takes an Observable as its input and returns another Observable.
Creation Operators are the other kind of operator, which can be called as standalone functions to create a new Observable
2 An operator is a function that takes one observable (the source) as its first argument and returns another observable (the destination, or outer observable)
3 Operators take configuration options, and they return a function that takes a source observable.
4 Operators should always return an Observable [..] If you create a method that returns something other than an Observable, it's not an operator, and that's fine.
Since 1,2,4 seem to be conflicting with 3, which definition is the correct one. Is there a better definition of rxjs operators?
For example: in case of map. Is map() itself the operator? Or the operator is the return value of map()?
Is map() itself the operator? Or the operator is the return value of map()?
Current implementation of the map() looks like this:
export function map<T, R>(project: (value: T, index: number) => R, thisArg?: any): OperatorFunction<T, R> {
return function mapOperation(source: Observable<T>): Observable<R> {
if (typeof project !== 'function') {
throw new TypeError('argument is not a function. Are you looking for `mapTo()`?');
}
return source.lift(new MapOperator(project, thisArg));
};
}
So, map() is a function. It is an operator in RxJS terms, yes, but it's still a regular JavaScript function. That's it.
This operator receives projection callback function which gets called by the map operator. This callback is something you're passing to map(), e.g. value => value.id from this example:
source$.pipe(map(value => value.id))
The return value of the map is also a function (declared as OperatorFunction<T, R>). You can tell that it is a function since map returns function mapOperation().
Now, mapOperation function receives only one parameter: source which is of type Observable<T> and returns another (transformed) Observable<R>.
To summarize, when you say:
A Pipeable Operator is a function that takes an Observable as its input and returns another Observable.
This means that an RxJS operator (which is a function) is pipeable when it takes an Observable as its input and returns another Observable which in our case is true: a map operator indeed returns a function (mapOperation) whose signature ((source: Observable<T>): Observable<R>) indicates exactly that: it takes one Observable and returns another.
An operator is a function that takes one observable (the source) as its first argument and returns another observable (the destination, or outer observable)
I already mentioned couple of times that an operator is a just function.
Operators take configuration options, and they return a function that takes a source observable.
Yes, in this case, a map() could be called operator since it receives configuration option - a projecttion callback function. So, there's really no conflicts here since many operators are configurable.
I'd say that there's conflict in this one:
Operators should always return an Observable [..] If you create a method that returns something other than an Observable, it's not an operator, and that's fine.
I guess that this is an old definition when pipeable operators weren't pipeable. Before pipeable operators were introduced (I think in version 5 of RxJS), operators were returning Observables. An old map() implementation indicates just that.
For more information about why creators of RxJS decided to introduce pipeable operators, please take a look at this document.
Another great article about what are Observables can be found here.
Also:
Creation Operators are the other kind of operator, which can be called as standalone functions to create a new Observable.
of() is an example of creation operator which returns (creates) an Observable. Please take a look at the source code.
TL;DR: A map() is a function that usually has one parameter (a projection callback function) which also returns a function that receives a source Observable and returns a destination Observable.
EDIT: To answer your question from comments, I'd like to do it here.
Yes, in RxJS 6 you can create a function that accepts observable and returns another one and that would be the operator. E.g.
function myOperatorFunction(s: Observable<any>) {
return of(typeof s);
}
and you'd call it like
source$.pipe(myOperatorFunction);
Please notice that I didn't call myOperatorFunction in pipe(), I just passed the reference to it, i.e. I didn't write myOperatorFunction with parenthesis, but without them. That is because pipe receives functions.
In cases where you need to pass some data or callback functions, like in map example, you'd have to have another function that would receive your parameters, just like map receives projection parameter, and use it however you like.
Now, you may wonder why there are operators that don't receive any data, but are still created as functions that return function, like refCount(). That is to coincide with other operators that mostly have some parameters so you don't have to remember which ones don't receive parameters or which ones have default parameters (like min()). In case of refCount, if it was written a bit different than it is now, you could write
source$.pipe(refCountOperatorFunction);
instead of
source$.pipe(refCount());
but you'd have to know that you have to write it this way, so that is the reason why functions are used to return functions (that receives observable and returns another observable).
EDIT 2: Now that you know that built in operators return functions, you could call them by passing in source observable. E.g.
map(value => value.toString())(of())
But this is ugly and not recommended way of piping operators, though it would still work. Let's see it in action:
of(1, 2, true, false, {a: 'b'})
.pipe(
map(value => value.toString()),
filter(value => value.endsWith('e'))
).subscribe(value => console.log(value));
can be also written like this:
filter((value: string) => value.endsWith('e'))(map(value => value.toString())(of(1, 2, true, false, {a: 'b'})))
.subscribe(a => console.log(a));
Although this is a completely valid RxJS code, there's no way you can think of what it does when you read the latter example. What pipe actually does here is that it reduces over all the functions that were passed in and calls them by passing the previous source Observable to the current function.
Yes. map itself is an operator.
Every operator returns an Observable so later on you can subscribe to the Observable you created.
Of course when I say 'you created' I mean that you created via a creation operator or using the Observable class: new Observable
A pipeable operator is just an operator that would be inside the pipe utility function.
Any function that returns a function with a signature of Observable can be piped and that's why you can create your own Observables and pipe operators to it.
I am pretty much sure that you already know all of this and all you want to know is why there is a conflict in what you are reading.
First, you don't have to pipe anything to your Observable.
You can create an Observable and subscribe to it and that's it.
Since you do not have to pipe anything to your Observable, what should we do with the operators?
Are they used only within a pipe?
Answer is NO
As mentioned, an operator takes configuration options, in your example:
const squareValues = map((val: number) => val * val);
and then it returns a new function that takes the source Observable so you can later on subscribe to it:
const squaredNums = squareValues(nums);
As we can see, map took (val: number) => val * val and returned a function that now gets the Observable nums: const nums = of(1, 2, 3);
Behind the scenes map will take the source observable and transform according to the configuration.
Now the important thing:
Instead of doing that in this way (which you can but no need for that), it is better to pipe your operators so you can combine all of the functions (assuming you are using more operators) into one single function.
So again, behind the scenes you can refer to pipe as a cooler way to make operations on your source Observable rather then declaring many variables that uses different operators with some configuration which return a function that takes a source Observable.
I would like to understand why take operator is used in code given below.
private _places = new BehaviorSubject<Place[]>(
// places for initialization
);
get places() {
return this._places.asObservable();
}
addPlace(title: string, description: string, price: number)
{
generatedId: string;
newPlace: Place;
// code to initialize newPlace
return this.http.post<{name: string}>(
'https://ionic-angular-ef2f8.firebaseio.com/offered-places.json',
{...newPlace, id: null})
.pipe(
switchMap(response => {
generatedId = response.name;
return this.places;
}),
take(1),
tap(places => {
newPlace.id = generatedId;
this._places.next(places.concat(newPlace));
})
);
}
post request returns an Observable, and we get a value from it in switchMap operator (note that we do not take a value before calling switchMap). In switchMap we replace the observable with a new observable got from _places, a BehaviourSubject object. After switchMap we use take operator.
Why don't we skip take operator, and use tap straight off? Do we take a value from an observable, because the observable is generated from a subject? Who can explain the use case of take operator in details?
UPDATE
I suspect that the reason I should use take operator after switchMap is that switchMap returns an observable received from an object of type BehaviorSubject which holds emitted values. One can subscribe to such BehaviorSubject object and take the latest emitted value - that's exactly what I did.
httpClient.post() emits one next notification and one complete notification.
However, they're using switchMap to merge another Observable to the chain (this.places). switchMap() won't complete until its source and the inner Observable complete so they're using take(1) to complete the chain after the first emission from this.places which is a BehaviorSubject that doesn't complete until you deliberately call complete() on it.
This is a very similar use-case to using takeUntil() to complete chains. takeUntil() always has to be the last operator in a chain because completing a source Observable to switchMap(), concatMap(), ... doesn't necessarily complete the whole chain. See this for more details https://medium.com/angular-in-depth/rxjs-avoiding-takeuntil-leaks-fb5182d047ef
What's the best way to handle asynchronous updates in the middle of an Observable stream.
Let's say there are 3 observables:
Obs1 (gets data from API) -> pipes to Obs2
Obs2 (transforms data) -> pipes to Obs3
Obs3 (sends transformed data)
(The actual application is more complex, and there's reasons it's not done in a single Observable, this is just a simple example).
That all works well and good if it's a linear synchronous path.
But we also have async messages that will change the output of Obs2.
3 scenarios I'm asking about are:
- we fetch data, and go through Obs1, Obs2 & Obs3
- we get a message to make a change, go through Obs2 & Obs3
- we get a different message to make a change which also needs to apply the change from the previous message, through Obs2 & Obs3
The main problem here is that there are different types of asynchronous messages that will change the outcome of Obs2, but they all need to still know what the previous outcome of Obs2 was (so the any other changes from messages that happened before is still applied)
I have tried using switchMap in Obs2 with a scan in Obs1 like this:
obs1
const obs1$ = obs1$.pipe(
// this returns a function used in the reducer.
map((data) => (prevData) => 'modifiedData',
scan((data, reducer) => reducer(betsMap), {})
)
obs2
const obs2$ = obs1$.pipe(
switchMap(data =>
someChange$.pipe(map(reducer => reducer(data)))
)
)
where someChange$ is a BehaviorSubject applying a change using another reducer function.
This works fine for async message #1 that makes some change.
But when message #2 comes in and a different change is needed, the first change is lost.
the changes that should be in "prevData" in obs1$ is always undefined because it happens before the message is applied.
How can I take the output from obs2$ and apply asynchronous updates to it that remembers what all of the past updates was? (in a way where I can clear all changes if needed)
So if i got the question right, there are two problems that this question tackles:
First: How to cache the last 2 emitted values from stream.
scan definitely is the right way, if this cache logic is needed in more than one place/file, I would go for a custom pipe operator, like the following one
function cachePipe() {
return sourceObservable =>
sourceObservable.pipe(
scan((acc, cur) => {
return acc.length === 2 ? [...acc.slice(1), cur] : [...acc, cur];
}, [])
);
}
cachePipe will always return the latest 2 values passed trough the stream.
...
.pipe(
cachePipe()
)
Second: How to access data from multiple streams at the same time, upon stream event
Here rxjs's combineLatest creation operator might do the trick for you,
combineLatest(API$, async1$ ,async2$,async3$)
.pipe(
// here I have access to an array of the last emitted value of all streams
// and the data can be passed to `Obs2` in your case
)
In the pipe I can chain whatever number of observables, which resolves the second problem.
Note:
combineLatest needs for all streams, inside of it, to emit once, before the operator strats to emit their combined value, one workaround is to use startWith operator with your input streams, another way to do it is by passing the data trough BehaviorSubject-s.
Here is a demo at CodeSandbox , that uses the cachePipe() and startWith strategy to combine the source (Obs1) with the async observables that will change the data.
I have a side effect Observable that's required to be resolved before the main Observable is completed. If it were a synchronous operation, I could use the tap() operator. Is there a clear equivalent for an asynchronous operation?
In the following example, I have to map the inner value back to the outer value I actually want to pipe through. How would I avoid this mapping?
const user = requestUser().pipe(
switchMap(user => {
return requestAndAssignToken(user)
.pipe(
map(token => user)
);
})
);
If I understand correctly, you want to ignore the result of the inner Observable and just have the outer Observable wait for it to emit before moving on.
In that case, I'd suggest the delayWhen operator. It is passed a delayDurationSelector that returns an Observable (the duration Observable). It then behaves like stated in the documentation:
The source value is emitted on the output Observable only when the duration Observable emits a value or completes
For your example, it would look like this:
const user = requestUser().pipe(
delayWhen(user => requestAndAssignToken(user))
);
Here is a simple example