Transparent vertex colort hreejs - three.js

I have boxGeometry with 2 vertexes. Is it possible, that one of the vertex is transparent?
How do i do that?
Desired result

You can have vertex colors with an alpha channel (see forum and example), but I don't think it would produce the sharp diagonal boundary you show. It may be more appropriate to make a BufferGeometry in the shape of the pink region.

Related

how can I adapt a geometry to a surface?

How can I adapt a geometry (a box geometry to start with) to another one? I am looking for an effect like the one in the picture
where the cyan part was originally a box and then it got "adapted" to the plane and over the red part.
This is possible in some software packages (Modo, for example) but I'd like to do it in webGL/three.js
Consider modifying mesh geometry.
That implies for good results mesh will need to have high polygon count.
If you want to hug a simple shape (box, sphere) - vertex displacement can be sufficient:
Pass your red shape's parameters as uniforms when drawing blue shape
For any blue shape vertex find if it is inside or red shape and offset vertex position if needed
Choosing offset direction as closest face normal of red shape should be ok
That will give just visuals, if you need more robust solution - generate new geometry entirely on cpu on demand.
For example:
Loop through all vertices and offset them, mark offseted vertices
Additionally loop to relax hard edges
I suspect real algorithms from 3d modelling software are more complex.

Algorithm to create Image Texture from Vertex colors

I know i can go from 3d space to 2d space of the Mesh by getting the corresponding uv coordinates of the vertex.
When i transform to uv space, each vertex will have its color and i can put the color in the pixel position what the uv co-ordinate returns for a particular vertex, but the issue is how do i derive the pixels that lie inbetween them, i want a smooth gradient.
For example, the color value at uv co-ordinate (0.5,0.5)->(u,v) is [30,40,50]->(RGB) and at [0.75,0.75] its [70,80,90] and lets say there are three vertices and theres one more at [0.25.0.6] as [10,20,30], how do i derive the colors that goes on the area these three uv/vertex coordinates fill, i mean the inbetween values for the pixels?
Just draw this mesh on a GPU. You know already that you can replace vertex positions with UVs so you have it represented on the texture space.
Keep your vertex colors unchanged and draw this mesh on your target texture, GPU will do color interpolation for every triangle you draw.
And keep in mind that if two or more triangles share the same texture space then the result will depend on triangle order.

OpenGL ES GL_TRIANGLES gradient issue

I am trying to draw a area graph with a gradient. This is what I have right now.
If you look at the red-green graph, you will notice the gradient is does not look the way its supposed to.
EDIT: The gradient should be uniform like this:
I am using OpenGL ES 2.0 and GLKit to draw a bunch of charts. The chart is drawn using GL_TRIANGLES. I understand that the issue is that the gradient is being drawn for each triangle individually.
The only approach I can think of is to use a stencil buffer. I will draw the gradient in a big rectangle and clip it to this shape using the stencil. Is there a better way to do this? If not could you help me draw a stencil with specified points? I am new to OpenGL and not getting a good explanation on using stencil buffer.
You don't need a stencil buffer. I don't think more triangles will help, either — more likely that'd just cause you more confusion because you'd be assigning per-vertex colors to intermediate vertices and having to interpolate them yourself.
Your gradients are coming out that way because of how and where you assign vertex colors for interpolation. Notice the difference in colors between your output and the example of what you're looking for:
You've got 100% red at every vertex along the top edge of your graph, and 100% green at every vertex along the bottom edge. OpenGL interpolates colors linearly across the face of each triangle, which is why you've got more red in the shorter parts of your graph.
In the output you're looking for, the top of the graph starts out less red in the shorter parts, so that it makes a shorter transition to white in over shorter distance.
There are a few different ways to do this, but probably the easiest (for your plan of using GLKBaseEffect instead of writing your own shaders) might be to use a 1D texture for your gradient, and assign a texture coordinate to each vertex that's proportional to its Y coordinate on the graph, like so:
(The example coordinates in my diagram assume your graph vertices cover the range 0.0 to 1.0, but the point stands regardless: the vertical texture coordinate for each point should be a fraction of the graph's total height, between 0.0 and 1.0.)
Alternatively, you could look into drawing in two passes: First, draw the shape of your graph, then draw a quad (two triangles) covering the entire screen with your gradient, using the appropriate glBlendFunc so that it only draws over the area you've filled in with your graph shape.
OpenGL ES can do what you want but you need to increase the tessellation of your model. In other words, instead of using just a few large triangles, you need more and smaller triangles, with the vertex color changes spread over them evenly. This will give you better control over the gradients. Triangles are cheap on accelerated OpenGL ES, so even if you increase the number 100 times, it will not have much impact on performance.
You might also consider a different approach, where the entire graph is covered by a single texture which contains the gradient. That would be easier to implement.

2D geometry outline shader

I want to create a shader to outline 2D geometry. I'm using OpenGL ES2.0. I don't want to use a convolution filter, as the outline is not dependent on the texture, and it is too slow (I tried rendering the textured geometry to another texture, and then drawing that with the convolution shader). I've also tried doing 2 passes, the first being single colorded overscaled geometry to represent an oultine, and then normal drawing on top, but this results in different thicknesses or unaligned outlines. I've looking into how silhouette's in cel-shading are done but they are all calculated using normals and lights, which I don't use at all.
I'm using Box2D for physics, and have "destructable" objects with multiple fixtures. At any point an object can be broken down (fixtures deleted), and I want to the outline to follow the new outter counter.
I'm doing the drawing with a vertex buffer that matches the vertices of the fixtures, preset texture coordinates, and indices to draw triangles. When a fixture is removed, it's associated indices in the index buffer are set to 0, so no triangles are drawn there anymore.
The following image shows what this looks like for one object when it is fully intact.
The red points are the vertex positions (texturing isn't shown), the black lines are the fixtures, and the blue lines show the seperation of how the triangles are drawn. The gray outline is what I would like the outline to look like in any case.
This image shows the same object with a few fixtures removed.
Is this possible to do this in a vertex shader (or in combination with other simple methods)? Any help would be appreciated.
Thanks :)
Assuming you're able to do something about those awkward points that are slightly inset from the corners (eg, if you numbered the points in English-reading order, with the first being '1', point 6 would be one)...
If a point is interior then if you list all the polygon edges connected to it in clockwise order, each pair of edges in sequence will have a polygon in common. If any two edges don't have a polygon in common then it's an exterior point.
Starting from any exterior point you can then get the whole outline by first walking in any direction and subsequently along any edge that connects to an exterior point you haven't visited yet (or, alternatively, that isn't the edge you walked along just now).
Starting from an existing outline and removing some parts, you can obviously start from either exterior point that used to connect to another but no longer does and just walk from there until you get to the other.
You can't handle this stuff in a shader under ES because you don't get connectivity information.
I think the best you could do in a shader is to expand the geometry by pushing vertices outward along their surface normals. Supposing that your data structure is a list of rectangles, each described by, say, a centre, a width and a height, you could achieve the same thing by drawing each with the same centre but with a small amount added to the width and height.
To be completely general you'd need to store normals at vertices, but also to update them as geometry is removed. So there'd be some pushing of new information from the CPU but it'd be relatively limited.

OBJ format and Flat vs Smooth Shading

I'm using OpenGL ES 1.1 and working on converting an OBJ export from Blender into some binary files containing vertex data. I actually already have a working tool, but I'm working on changing some things and came across a question.
Even with Smooth shading, it seems that with correct normals (perpendicular to the face plane) it achieves a flat appearance for faces. With Smooth shading enabled and the proper normals (simply via edges marked as sharp in Blender and an edge-split modifier applied), I can get the affect of smooth parts and sharp edges.
Where I'm going with this brings 2 questions.
Are the "s 1" or "s off" lines where smooth or flat shading is denoted in the OBJ file completely unnecessary from a smooth shading and use of normals standpoint?
When actually set to Flat shading in OpenGL, are normals completely ignored (or just assumed to all be perpendicular to the faces)?
For a vertex to look smooth, its normal has to be the average of the adjacent face normals (or something the like), but not perpendicular to the face plane (except if you meaned the average plane of all its adjacent faces).
GL_FLAT means, the color of a face is not interpolated over the triangle, but taken from a single triangle corner (don't know which, first or last). This color comes either from vertex colors or vertex lighting, so in fact you get per-face normals, but this is not neccessarily the faces direction, but the normal of a corner vertex.
If you got per vertex normals in the OBJ file you do not need the s parts. But you can use these to compute vertex normals. The s parts are the smoothing groups and are to be interpreted as 32bit bitfields. So there are actually 32 different smoothing groups and every face can be part of more than one. So all faces after an "s 5" line are part of smoothing groups 1 and 3 (first and third bits set). When two neighbouring faces are part of the same smoothing group, the edge between them is smooth (vertices share normals). This way you can reconstruct the neccessary per-vertex normals.
Changing the mode between gl_flat and gl_smooth doesn't seem to affect my rendering when I'm using per vertex normals. Your problem from what I can tell is that each face only has one normal. For smooth shading, each face should have three normals, one for each vertex, and they should all be different. For example, the normals of a cylinder, if projected inside of the cylinder, should all intersect at the axis of the cylinder. If your model has smooth normals, then an OBJ export should export per vertex normals. It sounds like you are probably assigning per face normals. As far as rendering in OpenGL-ES, the smoothing groups aren't used, only normals.

Resources