Why SonicBOOM uses PIPT D$ while intel use VIPT cache? - caching

It seems like BOOM(Berkeley Out-of-Order Machine) uses PIPT(Physically Indexed Physically Tagged) DCache, but some processors such as intel use VIPT DCache, can anyone tell me why?

Related

How are the modern Intel CPU L3 caches organized?

Given that CPUs are now multi-core and have their own L1/L2 caches, I was curious as to how the L3 cache is organized given that its shared by multiple cores. I would imagine that if we had, say, 4 cores, then the L3 cache would contain 4 pages worth of data, each page corresponding to the region of memory that a particular core is referencing. Assuming I'm somewhat correct, is that as far as it goes? It could, for example, divide each of these pages into sub-pages. This way when multiple threads run on the same core each thread may find their data in one of the sub-pages. I'm just coming up with this off the top of my head so I'm very interested in educating myself on what is really going on underneath the scenes. Can anyone share their insights or provide me with a link that will cure me of my ignorance?
Many thanks in advance.
There is single (sliced) L3 cache in single-socket chip, and several L2 caches (one per real physical core).
L3 cache caches data in segments of size of 64 bytes (cache lines), and there is special Cache coherence protocol between L3 and different L2/L1 (and between several chips in the NUMA/ccNUMA multi-socket systems too); it tracks which cache line is actual, which is shared between several caches, which is just modified (and should be invalidated from other caches). Some of protocols (cache line possible states and state translation): https://en.wikipedia.org/wiki/MESI_protocol, https://en.wikipedia.org/wiki/MESIF_protocol, https://en.wikipedia.org/wiki/MOESI_protocol
In older chips (epoch of Core 2) cache coherence was snooped on shared bus, now it is checked with help of directory.
In real life L3 is not just "single" but sliced into several slices, each of them having high-speed access ports. There is some method of selecting the slice based on physical address, which allow multicore system to do many accesses at every moment (each access will be directed by undocumented method to some slice; when two cores uses same physical address, their accesses will be served by same slice or by slices which will do cache coherence protocol checks).
Information about L3 cache slices was reversed in several papers:
https://cmaurice.fr/pdf/raid15_maurice.pdf Reverse Engineering Intel Last-Level Cache Complex Addressing Using Performance Counters
https://eprint.iacr.org/2015/690.pdf Systematic Reverse Engineering of Cache Slice Selection in Intel Processors
https://arxiv.org/pdf/1508.03767.pdf Cracking Intel Sandy Bridge’s Cache Hash Function
With recent chips programmer has ability to partition the L3 cache between applications "Cache Allocation Technology" (v4 Family): https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models https://danluu.com/intel-cat/ https://lwn.net/Articles/659161/
Modern Intel L3 caches (since Nehalem) use a 64B line size, the same as L1/L2. They're shared, and inclusive.
See also http://www.realworldtech.com/nehalem/2/
Since SnB at least, each core has part of the L3, and they're on a ring bus. So in big Xeons, L3 size scales linearly with number of cores.
See also Which cache mapping technique is used in intel core i7 processor? where I wrote a much larger and more complete answer.

How to disable the Last Level Cache only of Intel Ivybridge CPU?

I know how to disable all of the three levels of cache on Intel IvyBridge CPU. I only need to set the CD bit of CR0 register to 1 for all of CPUs.
However, I want to disable the last level of cache (L3 cache) only on Intel IvyBridget or SandyBridge CPU and keep using the L1 and L2 on chip cache.
The reason why I want to do this experiment is because I want to test the performance of the L3 cache and want to see the effect of not using the L3 cache.
Could any one give me a pointer or some insight on how to achieve that?

L2 cache in Kepler

How does L2 cache work in GPUs with Kepler architecture in terms of locality of references? For example if a thread accesses an address in global memory, supposing the value of that address is not in L2 cache, how is the value being cached? Is it temporal? Or are other nearby values of that address brought to L2 cache too (spatial)?
Below picture is from NVIDIA whitepaper.
Unified L2 cache was introduced with compute capability 2.0 and higher and continues to be supported on the Kepler architecture. The caching policy used is LRU (least recently used) the main intention of which was to avoid the global memory bandwidth bottleneck. The GPU application can exhibit both types of locality (temporal and spatial).
Whenever there is an attempt read a specific memory it looks in the cache L1 and L2 if not found, then it will load 128 byte from the cache line. This is the default mode. The same can be understood from the below diagram as to why the 128 bit access pattern gives the good result.

How can I read from the pinned (lock-page) RAM, and not from the CPU cache (use DMA zero-copy with GPU)?

If I use DMA for RAM <-> GPU on CUDA C++, How can I be sure that the memory will be read from the pinned (lock-page) RAM, and not from the CPU cache?
After all, with DMA, the CPU does not know anything about the fact that someone changed the memory and about the need to synchronize the CPU (Cache<->RAM). And as far as I know, std :: memory_barier () from C + +11 does not help with DMA and will not read from RAM, but only will result in compliance between the caches L1/L2/L3. Furthermore, in general, then there is no protocol to resolution conflict between cache and RAM on CPU, but only sync protocols different levels of CPU-cache L1/L2/L3 and multi-CPUs in NUMA: MOESI / MESIF
On x86, the CPU does snoop bus traffic, so this is not a concern. On Sandy Bridge class CPUs, the PCI Express bus controller is integrated into the CPU, so the CPU actually can service GPU reads from its L3 cache, or update its cache based on writes by the GPU.

How are cache memories shared in multicore Intel CPUs?

I have a few questions regarding Cache memories used in Multicore CPUs or Multiprocessor systems. (Although not directly related to programming, it has many repercussions while one writes software for multicore processors/multiprocessors systems, hence asking here!)
In a multiprocessor system or a multicore processor (Intel Quad Core, Core two Duo etc..) does each cpu core/processor have its own cache memory (data and program cache)?
Can one processor/core access each other's cache memory, because if they are allowed to access each other's cache, then I believe there might be lesser cache misses, in the scenario that if that particular processors cache does not have some data but some other second processors' cache might have it thus avoiding a read from memory into cache of first processor? Is this assumption valid and true?
Will there be any problems in allowing any processor to access other processor's cache memory?
In a multiprocessor system or a multicore processor (Intel Quad Core,
Core two Duo etc..) does each cpu core/processor have its own cache
memory (data and program cache)?
Yes. It varies by the exact chip model, but the most common design is for each CPU core to have its own private L1 data and instruction caches.
On old and/or low-power CPUs, the next level of cache is typically a L2 unified cache is typically shared between all cores. Or on 65nm Core2Quad (which was two core2duo dies in one package), each pair of cores had their own last-level cache and couldn't communicate as efficiently.
Modern mainstream Intel CPUs (since the first-gen i7 CPUs, Nehalem) use 3 levels of cache.
32kiB split L1i/L1d: private per-core (same as earlier Intel)
256kiB unified L2: private per-core. (1MiB on Skylake-avx512).
large unified L3: shared among all cores
Last-level cache is a a large shared L3. It's physically distributed between cores, with a slice of L3 going with each core on the ring bus that connects the cores. Typically 1.5 to 2.25MB of L3 cache with every core, so a many-core Xeon might have a 36MB L3 cache shared between all its cores. This is why a dual-core chip has 2 to 4 MB of L3, while a quad-core has 6 to 8 MB.
On CPUs other than Skylake-avx512, L3 is inclusive of the per-core private caches so its tags can be used as a snoop filter to avoid broadcasting requests to all cores. i.e. anything cached in a private L1d, L1i, or L2, must also be allocated in L3. See Which cache mapping technique is used in intel core i7 processor?
David Kanter's Sandybridge write-up has a nice diagram of the memory heirarchy / system architecture, showing the per-core caches and their connection to shared L3, and DDR3 / DMI(chipset) / PCIe connecting to that. (This still applies to Haswell / Skylake-client / Coffee Lake, except with DDR4 in later CPUs).
Can one processor/core access each other's cache memory, because if
they are allowed to access each other's cache, then I believe there
might be lesser cache misses, in the scenario that if that particular
processors cache does not have some data but some other second
processors' cache might have it thus avoiding a read from memory into
cache of first processor? Is this assumption valid and true?
No. Each CPU core's L1 caches tightly integrate into that core. Multiple cores accessing the same data will each have their own copy of it in their own L1d caches, very close to the load/store execution units.
The whole point of multiple levels of cache is that a single cache can't be fast enough for very hot data, but can't be big enough for less-frequently used data that's still accessed regularly. Why is the size of L1 cache smaller than that of the L2 cache in most of the processors?
Going off-core to another core's caches wouldn't be faster than just going to L3 in Intel's current CPUs. Or the required mesh network between cores to make this happen would be prohibitive compared to just building a larger / faster L3 cache.
The small/fast caches built-in to other cores are there to speed up those cores. Sharing them directly would probably cost more power (and maybe even more transistors / die area) than other ways of increasing cache hit rate. (Power is a bigger limiting factor than transistor count or die area. That's why modern CPUs can afford to have large private L2 caches).
Plus you wouldn't want other cores polluting the small private cache that's probably caching stuff relevant to this core.
Will there be any problems in allowing any processor to access other
processor's cache memory?
Yes -- there simply aren't wires connecting the various CPU caches to the other cores. If a core wants to access data in another core's cache, the only data path through which it can do so is the system bus.
A very important related issue is the cache coherency problem. Consider the following: suppose one CPU core has a particular memory location in its cache, and it writes to that memory location. Then, another core reads that memory location. How do you ensure that the second core sees the updated value? That is the cache coherency problem.
The normal solution is the MESI protocol, or a variation on it. Intel uses MESIF.
Quick answers
1) Yes 2)No, but it all may depend on what memory instance/resource you are referring, data may exist in several locations at the same time. 3)Yes.
For a full length explanation of the issue you should read the 9 part article "What every programmer should know about memory" by Ulrich Drepper ( http://lwn.net/Articles/250967/ ), you will get the full picture of the issues you seem to be inquiring about in a good and accessible detail.
To answer your first, I know the Core 2 Duo has a 2-tier caching system, in which each processor has its own first-level cache, and they share a second-level cache. This helps with both data synchronization and utilization of memory.
To answer your second question, I believe your assumption to be correct. If the processors were to be able to access each others' cache, there would obviously be less cache misses as there would be more data for the processors to choose from. Consider, however, shared cache. In the case of the Core 2 Duo, having shared cache allows programmers to place commonly used variables safely in this environment so that the processors will not have to access their individual first-level caches.
To answer your third question, there could potentially be a problem with accessing other processors' cache memory, which goes to the "Single Write Multiple Read" principle. We can't allow more than one process to write to the same location in memory at the same time.
For more info on the core 2 duo, read this neat article.
http://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/

Resources