How to make moving average using geopandas nearest neighbors? - geopandas

I have a geodataframe ("GDF") with one column as "values", and another column as "geometry" (that in fact are actual geographical regions), so each row represents a region.
The "values" column is zero in many rows, and a large number in some rows.
I need to make a "moving average" or rolling average, using the nearest neighbors up to a certain "max_distance" (we can assume that the GDF has a locally projected CRS, so the max_distance has real meaning).
Thus, the averaged_values would have neither zero or large values in most of the regions, but an average value.
One way to do it would be
for region in GDF:
averaged_values=sjoin_nearest(GDF,GDF,maxdistance=1000).values.mean()
But really I don't know how to proceed.
The expected output would be a geodataframe with 3 columns:
"values", "averaged_values", and "geometry".
Any ideas?

What you are trying to do is also called a spatial lag. The best way is to create spatial weights matrix based on a set distance and compute the lag, both using libpysal library, which is a part of the geopandas ecosystem.
import libpysal
# create weights
W = libpysal.weights.DistanceBand.from_dataframe(gdf, threshold=1000)
# row-normalise weights
W.transform = "r"
# create lag
gdf["averaged_values"] = libpysal.weights.lag_spatial(W, gdf["values"])

Related

tensorflow: reduce_max function

consider the following code-
a=tf.convert_to_tensor(np.array([[1001,1002],[3,4]]), dtype=tf.float32)
b=tf.reduce_max(a,reduction_indices=[1], keep_dims=True)
with tf.Session():
print b.eval()
What exactly is the purpose of keep_dims here? I tested quite a bit, and saw that the above is equivalent to-
b=tf.reduce_max(a,reduction_indices=[1], keep_dims=False)
b=tf.expand_dims(b,1)
I maybe wrong, but my guess is that if keep_dims is False, we get a 2D coloumn vector. And if keep_dims=True, we have a 2x1 matrix. But how are they different?
If you reduce over one or more indices (i.e. dimensions of the tensor), you effectively reduce the rank of the tensor (i.e. its number of dimensions or, in other words, the number of indices you need in order to access an element of the tensor). By setting keep_dims=True, you are telling tensorflow to keep the dimensions over which you reduce. They will then have size 1, but they are still there. While a column vector and a nx1 matrix are conceptually the same thing, in tensorflow, these are tensors of rank 1 (you need a single index to access an element) and rank 2 (you need two indices to access an element), respectively.

What's the best way to find KNN by hand?

Lets say I'm given the following and need to find 'use' KNN to predict the class label of record 15 and know beforehand that k is set to 3. What are the proper steps, regardless of table, or label or k is set to in order to do this?
The first 10 are training data, and the other 10 are testing data.
First you need to convert the categorical data to numeric data.
For example: In case of the Astigmatism column you may use 1 for 'Yes' and 0 for 'No'.
Similarly do this for Age, Spectacle Prescription and Tear Production Rate.
Now that you have converted your categorical data to numeric values,you are ready to apply KNN.
Considering the testing data, select each row one by one and calculate its distance (can be L1 distance or L2 distance) from each point in the training set. So for the 11th data point you calculate its distance from all training points from 0 to 10.
Note calculation of distance has become possible only because of the conversion of categorial data to numerical values.
Then after you have 10 distance values corresponding to the distance of the 11th data point with all other training datapoints, you select the 3 (As k=3) points with minimum distance,and see their labels then you select the label with the majority.
Repeat this for all testing points.

Creating a cluster centroid prone to noise

I'm working on a clustering algorithm to group similar ranges of real numbers. After I group them, I have to create one range for that cluster, i.e., cluster centroid. For example, if one cluster contains values <1,6>, <0,7> and <0,6>, that means that this cluster is for all those with values <0,7>. The question is how to create such a resulting range. I was thinking to take the min and max value of all values in the cluster, but that would mean that the algorithm is very sensitive on noise. I should do it somehow weighted, but I'm not sure how. Any hints? Thanks.
Perhaps you can convert all ranges to their midpoints before running your clustering algorithm. That way you convert your problem into clustering points on a line. Previously, the centroid range could 'grow' and in the next iteration consume more ranges that perhaps should belong to another cluster.
midpoints = []
for range in ranges
midpoints[range] = range.min + (range.max - range.min) / 2
end
After the algorithm is finished you can do as you previously suggested and take the min and max values of all the ranges in the cluster to create the range for that centroid.

Find the "largest" dense sub matrix in a large sparse matrix

Given a large sparse matrix (say 10k+ by 1M+) I need to find a subset, not necessarily continuous, of the rows and columns that form a dense matrix (all non-zero elements). I want this sub matrix to be as large as possible (not the largest sum, but the largest number of elements) within some aspect ratio constraints.
Are there any known exact or aproxamate solutions to this problem?
A quick scan on Google seems to give a lot of close-but-not-exactly results. What terms should I be looking for?
edit: Just to clarify; the sub matrix need not be continuous. In fact the row and column order is completely arbitrary so adjacency is completely irrelevant.
A thought based on Chad Okere's idea
Order the rows from largest count to smallest count (not necessary but might help perf)
Select two rows that have a "large" overlap
Add all other rows that won't reduce the overlap
Record that set
Add whatever row reduces the overlap by the least
Repeat at #3 until the result gets to small
Start over at #2 with a different starting pair
Continue until you decide the result is good enough
I assume you want something like this. You have a matrix like
1100101
1110101
0100101
You want columns 1,2,5,7 and rows 1 and 2, right? That submatrix would 4x2 with 8 elements. Or you could go with columns 1,5,7 with rows 1,2,3 which would be a 3x3 matrix.
If you want an 'approximate' method, you could start with a single non-zero element, then go on to find another non-zero element and add it to your list of rows and columns. At some point you'll run into a non-zero element that, if it's rows and columns were added to your collection, your collection would no longer be entirely non-zero.
So for the above matrix, if you added 1,1 and 2,2 you would have rows 1,2 and columns 1,2 in your collection. If you tried to add 3,7 it would cause a problem because 1,3 is zero. So you couldn't add it. You could add 2,5 and 2,7 though. Creating the 4x2 submatrix.
You would basically iterate until you can't find any more new rows and columns to add. That would get you too a local minimum. You could store the result and start again with another start point (perhaps one that didn't fit into your current solution).
Then just stop when you can't find any more after a while.
That, obviously, would take a long time, but I don't know if you'll be able to do it any more quickly.
I know you aren't working on this anymore, but I thought someone might have the same question as me in the future.
So, after realizing this is an NP-hard problem (by reduction to MAX-CLIQUE) I decided to come up with a heuristic that has worked well for me so far:
Given an N x M binary/boolean matrix, find a large dense submatrix:
Part I: Generate reasonable candidate submatrices
Consider each of the N rows to be a M-dimensional binary vector, v_i, where i=1 to N
Compute a distance matrix for the N vectors using the Hamming distance
Use the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm to cluster vectors
Initially, each of the v_i vectors is a singleton cluster. Step 3 above (clustering) gives the order that the vectors should be combined into submatrices. So each internal node in the hierarchical clustering tree is a candidate submatrix.
Part II: Score and rank candidate submatrices
For each submatrix, calculate D, the number of elements in the dense subset of the vectors for the submatrix by eliminating any column with one or more zeros.
Select the submatrix that maximizes D
I also had some considerations regarding the min number of rows that needed to be preserved from the initial full matrix, and I would discard any candidate submatrices that did not meet this criteria before selecting a submatrix with max D value.
Is this a Netflix problem?
MATLAB or some other sparse matrix libraries might have ways to handle it.
Is your intent to write your own?
Maybe the 1D approach for each row would help you. The algorithm might look like this:
Loop over each row
Find the index of the first non-zero element
Find the index of the non-zero row element with the largest span between non-zero columns in each row and store both.
Sort the rows from largest to smallest span between non-zero columns.
At this point I start getting fuzzy (sorry, not an algorithm designer). I'd try looping over each row, lining up the indexes of the starting point, looking for the maximum non-zero run of column indexes that I could.
You don't specify whether or not the dense matrix has to be square. I'll assume not.
I don't know how efficient this is or what its Big-O behavior would be. But it's a brute force method to start with.
EDIT. This is NOT the same as the problem below.. My bad...
But based on the last comment below, it might be equivilent to the following:
Find the furthest vertically separated pair of zero points that have no zero point between them.
Find the furthest horizontally separated pair of zero points that have no zeros between them ?
Then the horizontal region you're looking for is the rectangle that fits between these two pairs of points?
This exact problem is discussed in a gem of a book called "Programming Pearls" by Jon Bentley, and, as I recall, although there is a solution in one dimension, there is no easy answer for the 2-d or higher dimensional variants ...
The 1=D problem is, effectively, find the largest sum of a contiguous subset of a set of numbers:
iterate through the elements, keeping track of a running total from a specific previous element, and the maximum subtotal seen so far (and the start and end elemnt that generateds it)... At each element, if the maxrunning subtotal is greater than the max total seen so far, the max seen so far and endelemnt are reset... If the max running total goes below zero, the start element is reset to the current element and the running total is reset to zero ...
The 2-D problem came from an attempt to generate a visual image processing algorithm, which was attempting to find, within a stream of brightnesss values representing pixels in a 2-color image, find the "brightest" rectangular area within the image. i.e., find the contained 2-D sub-matrix with the highest sum of brightness values, where "Brightness" was measured by the difference between the pixel's brighness value and the overall average brightness of the entire image (so many elements had negative values)
EDIT: To look up the 1-D solution I dredged up my copy of the 2nd edition of this book, and in it, Jon Bentley says "The 2-D version remains unsolved as this edition goes to print..." which was in 1999.

How can I sort a 10 x 10 grid of 100 car images in two dimensions, by price and speed?

Here's the scenario.
I have one hundred car objects. Each car has a property for speed, and a property for price. I want to arrange images of the cars in a grid so that the fastest and most expensive car is at the top right, and the slowest and cheapest car is at the bottom left, and all other cars are in an appropriate spot in the grid.
What kind of sorting algorithm do I need to use for this, and do you have any tips?
EDIT: the results don't need to be exact - in reality I'm dealing with a much bigger grid, so it would be sufficient if the cars were clustered roughly in the right place.
Just an idea inspired by Mr Cantor:
calculate max(speed) and max(price)
normalize all speed and price data into range 0..1
for each car, calculate the "distance" to the possible maximum
based on a²+b²=c², distance could be something like
sqrt( (speed(car[i])/maxspeed)^2 + (price(car[i])/maxprice)^2 )
apply weighting as (visually) necessary
sort cars by distance
place "best" car in "best" square (upper right in your case)
walk the grid in zigzag and fill with next car in sorted list
Result (mirrored, top left is best):
1 - 2 6 - 7
/ / /
3 5 8
| /
4
Treat this as two problems:
1: Produce a sorted list
2: Place members of the sorted list into the grid
The sorting is just a matter of you defining your rules more precisely. "Fastest and most expensive first" doesn't work. Which comes first my £100,000 Rolls Royce, top speed 120, or my souped-up Mini, cost £50,000, top speed 180?
Having got your list how will you fill it? First and last is easy, but where does number two go? Along the top or down? Then where next, along rows, along the columns, zig-zag? You've got to decide. After that coding should be easy.
I guess what you want is to have cars that have "similar" characteristics to be clustered nearby, and additionally that the cost in general increases rightwards, and speed in general increases upwards.
I would try to following approach. Suppose you have N cars and you want to put them in an X * Y grid. Assume N == X * Y.
Put all the N cars in the grid at random locations.
Define a metric that calculates the total misordering in the grid; for example, count the number of car pairs C1=(x,y) and C2=(x',y') such that C1.speed > C2.speed but y < y' plus car pairs C1=(x,y) and C2=(x',y') such that C1.price > C2.price but x < x'.
Run the following algorithm:
Calculate current misordering metric M
Enumerate through all pairs of cars in the grid and calculate the misordering metric M' you obtain if you swapt the cars
Swap the pair of cars that reduces the metric most, if any such pair was found
If you swapped two cars, repeat from step 1
Finish
This is a standard "local search" approach to an optimization problem. What you have here is basically a simple combinatorial optimization problem. Another approaches to try might be using a self-organizing map (SOM) with preseeded gradient of speed and cost in the matrix.
Basically you have to take one of speed or price as primary and then get the cars with the same value of this primary and sort those values in ascending/descending order and primaries are also taken in the ascending/descending order as needed.
Example:
c1(20,1000) c2(30,5000) c3(20, 500) c4(10, 3000) c5(35, 1000)
Lets Assume Car(speed, price) as the measure in the above list and the primary is speed.
1 Get the car with minimum speed
2 Then get all the cars with the same speed value
3 Arrange these values in ascending order of car price
4 Get the next car with the next minimum speed value and repeat the above process
c4(10, 3000)
c3(20, 500)
c1(20, 1000)
c2(30, 5000)
c5(35, 1000)
If you post what language you are using them it would we helpful as some language constructs make this easier to implement. For example LINQ makes your life very easy in this situation.
cars.OrderBy(x => x.Speed).ThenBy(p => p.Price);
Edit:
Now you got the list, as per placing this cars items into the grid unless you know that there will be this many number of predetermined cars with these values, you can't do anything expect for going with some fixed grid size as you are doing now.
One option would be to go with a nonuniform grid, If you prefer, with each row having car items of a specific speed, but this is only applicable when you know that there will be considerable number of cars which has same speed value.
So each row will have cars of same speed shown in the grid.
Thanks
Is the 10x10 constraint necessary? If it is, you must have ten speeds and ten prices, or else the diagram won't make very much sense. For instance, what happens if the fastest car isn't the most expensive?
I would rather recommend you make the grid size equal to
(number of distinct speeds) x (number of distinct prices),
then it would be a (rather) simple case of ordering by two axes.
If the data originates in a database, then you should order them as you fetch them from the database. This should only mean adding ORDER BY speed, price near the end of your query, but before the LIMIT part (where 'speed' and 'price' are the names of the appropriate fields).
As others have said, "fastest and most expensive" is a difficult thing to do, you ought to just pick one to sort by first. However, it would be possible to make an approximation using this algorithm:
Find the highest price and fastest speed.
Normalize all prices and speeds to e.g. a fraction out of 1. You do this by dividing the price by the highest price you found in step 1.
Multiply the normalized price and speed together to create one "price & speed" number.
Sort by this number.
This ensures that is car A is faster and more expensive than car B, it gets put ahead on the list. Cars where one value is higher but the other is lower get roughly sorted. I'd recommend storing these values in the database and sorting as you select.
Putting them in a 10x10 grid is easy. Start outputting items, and when you get to a multiple of 10, start a new row.
Another option is to apply a score 0 .. 200% to each car, and sort by that score.
Example:
score_i = speed_percent(min_speed, max_speed, speed_i) + price_percent(min_price, max_price, price_i)
Hmmm... kind of bubble sort could be simple algorithm here.
Make a random 10x10 array.
Find two neighbours (horizontal or vertical) that are in "wrong order", and exchange them.
Repeat (2) until no such neighbours can be found.
Two neighbour elements are in "wrong order" when:
a) they're horizontal neighbours and left one is slower than right one,
b) they're vertical neighbours and top one is cheaper than bottom one.
But I'm not actually sure if this algorithm stops for every data. I'm almost sure it is very slow :-). It should be easy to implement and after some finite number of iterations the partial result might be good enough for your purposes though. You can also start by generating the array using one of other methods mentioned here. Also it will maintain your condition on array shape.
Edit: It is too late here to prove anything, but I made some experiments in python. It looks like a random array of 100x100 can be sorted this way in few seconds and I always managed to get full 2d ordering (that is: at the end I got wrongly-ordered neighbours). Assuming that OP can precalculate this array, he can put any reasonable number of cars into the array and get sensible results. Experimental code: http://pastebin.com/f2bae9a79 (you need matplotlib, and I recommend ipython too). iterchange is the sorting method there.

Resources