Labeling for Constraint Logic Programming in prolog - prolog

I am currently writing an (exciting!) code in prolog that aims at returning an optimal reforestation plan after defining a certain purpose.
I have now, per grid cell generated a list of possible tree species to plant, and I have designed which grid cells should actually contain trees in a plan and which should be left "blank" (the density of trees also differs per reforestation purpose). I have now come to the point where I am trying to optimize
The amount of different species: If pos(1,2) can house tree_species1, tree_species2, tree_species3, and pos(4,10) can house tree_species2, tree_species3 and tree_species4 I would prefer that different values (e.g. tree_species1, tree_species4 respectively) are assigned to them. However, if this is not possible, I would love for the program to plant two of the same species rather than return "false" (which I think would happen using the "all_different/1" predicate.
Which tree is best for which purpose. For example, I would rather plant an Aspen than a White beam for biodiversity. I was thinking of connecting the different tree types to a score (biodiversity_score(Tree, Score)), but am unsure how I can use the CLP functions then to generate a "maximum" function.
I came across "labeling" but failed to see how I can manipulate this to my purpose.

Related

Relation between two texts with different tags

I'm currently having a problem with the conception of an algorithm.
I want to create a WYSIWYG editor that goes along the current [bbcode] editor I have.
To do that, I use a div with contenteditable set to true for the WYSIWYG editor and a textarea containing the associated bbcode. Until there, no problem. But my concern is that if a user wants to add a tag (for example, the [b] tag), I need to know where they want to include it.
For that, I need to know exactly where in the bbcode I should insert the tags. I thought of comparing the two texts (one with html tags like <span>, the other with bbcode tags like [b]), and that's where I'm struggling.
I did some research but couldn't find anything that would help me, or I did not understand it correctly (maybe did I do a wrong research). What I could find is the Jaccard index, but I don't really know how to make it work correctly.
I also thought of another alternative. I could just take the code in the WYSIWYG editor before the cursor location, and split it every time I encounter a html tag. That way, I can, in the bbcode editor, search for the first occurrence, then search for the second occurrence starting at the last index found, and so on until I reach the place where the cursor is pointing at.
I'm not sure if it would work, and I find that solution a bit dirty. Am I totally wrong or should I do it this way?
Thanks for the help.
A popular way of determining what is the level of the similarity between the two texts is computing the mentioned Jaccard similarity. Citing Wikipedia:
The Jaccard index, also known as Intersection over Union and the Jaccard similarity coefficient, is a statistic used for comparing the similarity and diversity of sample sets. The Jaccard coefficient measures the similarity between finite sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets:
If you have a large number of texts though, computing the full Jaccard index of every possible combination of two texts is super computationally expensive. There is another way to approximate this index that is called minhashing. What it does is use several (e.g. 100) independent hash functions to create a signature and it repeats this procedure many times. This whole process has a nice property that the probability (over all permutations) that T1 = T2 is the same as J(A,B).
Another way to cluster similar texts (or any other data) together is to use Locality Sensitive Hashing which by itself is an approximation of what KNN does, and is usually worse than that, but is definitely faster to compute. The basic idea is to project the data into low-dimensional binary space (that is, each data point is mapped to a N-bit vector, the hash key). Each hash function h must satisfy the sensitive hashing property prob[h(x)=h(y)]=sim(x,y) where sim(x,y) in [0,1] is the similarity function of interest. For dots products it can be visualized as follows:
we can now ask what would be the has of the indicated point (in this case it's 101) and everything that is close to this point has the same hash.
EDIT to answer the comment
No, you asked about the text similarity and so I answered that. You basically ask how can you predict the position of the character in text 2. It depends on whether you analyze the writer's style or just pure syntax. In any of those two cases, IMHO you need some sort of statistics that will tell where it is likely for this character to occur given all the other data/text. You can go with n-grams, RNNs, LSTMs, Markov Chains or any other form of sequential data analysis.

How to decide to convert to categorical variable or keep it numeric?

This might be a basic or trivial question and might be straightforward. Still I would like to ask this to clear my doubt once and for all.
Take example of Passanger Class in Famous Titanic Data. Functionally it is indeed a Categorical Data, so it will make perfect sense to convert it to categorical variable. Algorithms as per my understanding tend to see a pattern specific to that class. But at the same time if you see it as numeric variable, it might denote a range also for a decision tree. Say passangers in between first class and second class.
It looks both are correct and both will affect the machine learning algorithm outputs in different ways.
Which one is appropriate and is there anywhere there is a extensive discussion about it? Should we use such ambiguous variables as numeric as well its copy as a categorical variable, which might prove to be a technique to uncover more patterns?
I suppose it's up to you whether you'd rather interpret a continuous PassengerClass variable as "for every one-unit increase in PassengerClass, the passenger's likelihood of survival goes up/down X%," versus a categorical (factor) PassengerClass as, "the likelihoods of survival for groups 2 and 3 (for example, leaving 1st-class passengers as the base group) are X and Y% percent higher, respectively, than the base group, holding all else constant."
I think about variables like PassengerClass almost as "treatment groups." Yes, I suppose you could interpret it as continuous, but I think it makes more sense to consider the unique effects of each class like "people who were given the drug versus those who weren't" - you can very easily compare the impacts of being in a higher class (e.g. 2 or 3) to being in the most common class, 1, which again would be left out.
The problem with mapping categorical notions to numerical is that some algorithms (e.g. neural networks) will interpret the value itself as having a meaning, i.e. you would get different results if you assign values 1,2,3 to passenger classes than, for example 0,1,2 or 3,2,1. The correspondence between the passenger classes and numbers is purely conventional and doesn't necessarily convey any additional meaning.
One could argue that the lesser the number, the "better" the class is, however it's still hard to interpret it as "the first class is twice as good as second class", unless you'll define some measure of "goodness" that will make the relation between numbers "1" and "2" sensible.
In this example, you have categorical data that is ordinal - meaning you can rank the categories (from best accommodations to worst, for example) but they're still categories. Regardless of how you label them, there's no actual information about the relative distances among your categories. You can put them in a table, but not (correctly) on a number line. In cases like this, it's generally best to treat your categorical data as independent categories.

AMPL: what's a good way to specify equality constraints for large list of pairs of variable-size sets?

I'm working on a problem that involves reconciling data that represents estimates of the same system under two different classification hierarchies. I want to enforce the requirement that equivalent classes or groups of classes have the same sum.
For example, say Classification A divides industries into: Agriculture (sheep/cattle), Agriculture (non-sheep/cattle), Mining, Manufacturing (textiles), Manufacturing (non-textiles), ...
Meanwhile, Classification B has a different breakdown: Agriculture, Mining (iron ore), Mining (non-iron-ore), Manufacturing (chemical), Manufacturing (non-chemical), ...
In this case, any total for A_Agric_SheepCattle + A_Agric_NonSheepCattle should match the equivalent total for B_Agric; A_Mining should match B_MiningIronOre + B_Mining_NonIronOre; and A_MFG_Textiles+A_MFG_NonTextiles should match B_MFG_Chemical+B_MFG_NonChemical.
For bonus complication, one category may be involved in multiple equivalencies, e.g. B_Mining_IronOre might be involved in an equivalency with both A_Mining and A_Mining_Metallic.
I will be working with multi-dimensional tables, with this sort of concordance applied to more than one dimension - e.g. I might be compiling data on Industry x Product, so each equivalency will be used in multiple constraints; hence I need an efficient way to define them once and invoke repeatedly, instead of just setting a direct constraint "A_Agric_SheepCattle + A_Agric_NonSheepCattle = B_Agric".
The most natural way to represent this sort of concordance would seem to be as a list of pairs of sets. The catch is that the set sizes will vary - sometimes we have a 1:1 equivalence, sometimes it's "these 5 categories equate to those 7 categories", etc.
I found this related question which offers two answers for dealing with variable-sized sets. One is to define all set members in a single ordered set with indices, then define the starting index for each set within that. However, this seems unwieldy for my problem; both classifications are likely to be long, so I'd need to be hopping between two loooong lists of industries and two looong lists of indices to see a single equivalency. This seems like it would be a nuisance to check, and hard to modify (since any change to membership for one of the early sets changes the index numbers for all following sets).
The other is to define pairs of long fixed-length sets, and then pad each set to the required length with null members.
This would be a much better option for my purposes since it lets me eyeball a single line and see the equivalence that it represents. But it would require a LOT of padding; most of the equivalence groups will be small but a few might be quite large, and everything has to be padded to the size of the largest expected length.
Is there a better approach?

Can we merge rankings from somewhat-similar data sets to produce a global rank?

Another way of asking this is: can we use relative rankings from separate data sets to produce a global rank?
Say I have a variety of data sets with their own rankings based upon the criteria of cuteness for baby animals: 1) Kittens, 2) Puppies, 3) Sloths, and 4) Elephants. I used pairwise comparisons (i.e., showing people two random pictures of the animal and asking them to select the cutest one) to obtain these rankings. I also have the full amount of comparisons within data sets (i.e., all puppies were compared with each other in the puppy data set).
I'm now trying to merge the data sets together to produce a global ranking of the cutest animal.
The main issue of relative ranking is that the cutest animal in one set may not necessarily be the cutest in the other set. For example, let's say that baby elephants are considered to be less than attractive, and so, the least cutest kitten will always beat the cutest elephant. How should I get around this problem?
I am thinking of doing a few cross comparisons across data sets (Kittens vs Elephants, Puppies vs Kittens, etc) to create some sort of base importance, but this may become problematic as I add on the number of animals and the type of animals.
I was also thinking of looking further into filling in sparse matrices, but I think this is only applicable towards one data set as opposed to comparing across multiple data sets?
You can achieve your task using a rating system, like most known Elo, Glicko, or our rankade. A rating system allows to build a ranking starting from pairwise comparisons, and
you don't need to do all comparisons, neither have all animals be involved in the same number of comparisons,
you don't need to do comparison inside specific data set only (let all animals 'play' against all other animals, then if you need ranking for one dataset, just use global ranking ignoring animals from others).
Using rankade (here's a comparison with aforementioned ranking systems and Microsoft's TrueSkill) you can record outputs for 2+ items as well, while with Elo or Glicko you don't. It's extremely messy and difficult for people to rank many items, but a small multiple comparison (e.g. 3-5 animals) should be suitable and useful, in your work.

An understandable clusterization

I have a dataset. Each element of this set consists of numerical and categorical variables. Categorical variables are nominal and ordinal.
There is some natural structure in this dataset. Commonly, experts clusterize datasets such as mine using their 'expert knowledge', but I want to automate this process of clusterization.
Most algorithms for clusterization use distance (Euclidean, Mahalanobdis and so on) between objects to group them in clusters. But it is hard to find some reasonable metrics for mixed data types, i.e. we can't find a distance between 'glass' and 'steel'. So I came to the conclusion that I have to use conditional probabilities P(feature = 'something' | Class) and some utility function that depends on them. It is reasonable for categorical variables, and it works fine with numeric variables assuming they are distributed normally.
So it became clear to me that algorithms like K-means will not produce good results.
At this time I try to work with COBWEB algorithm, that fully matches my ideas of using conditional probabilities. But I faced another obsacles: results of clusterization are really hard to interpret, if not impossible. As a result I wanted to get something like a set of rules that describes each cluster (e.g. if feature1 = 'a' and feature2 in [30, 60], it is cluster1), like descision trees for classification.
So, my question is:
Is there any existing clusterization algorithm that works with mixed data type and produces an understandable (and reasonable for humans) description of clusters.
Additional info:
As I understand my task is in the field of conceptual clustering. I can't define a similarity function as it was suggested (it as an ultimate goal of the whoal project), because of the field of study - it is very complicated and mercyless in terms of formalization. As far as I understand the most reasonable approach is the one used in COBWEB, but I'm not sure how to adapt it, so I can get an undestandable description of clusters.
Decision Tree
As it was suggested, I tried to train a decision tree on the clustering output, thus getting a description of clusters as a set of rules. But unfortunately interpretation of this rules is almost as hard as with the raw clustering output. First of only a few first levels of rules from the root node do make any sense: closer to the leaf - less sense we have. Secondly, these rules doesn't match any expert knowledge.
So, I came to the conclusion that clustering is a black-box, and it worth not trying to interpret its results.
Also
I had an interesting idea to modify a 'decision tree for regression' algorithm in a certain way: istead of calculating an intra-group variance calcualte a category utility function and use it as a split criterion. As a result we should have a decision tree with leafs-clusters and clusters description out of the box. But I haven't tried to do so, and I am not sure about accuracy and everything else.
For most algorithms, you will need to define similarity. It doesn't need to be a proper distance function (e.g. satisfy triangle inequality).
K-means is particularly bad, because it also needs to compute means. So it's better to stay away from it if you cannot compute means, or are using a different distance function than Euclidean.
However, consider defining a distance function that captures your domain knowledge of similarity. It can be composed of other distance functions, say you use the harmonic mean of the Euclidean distance (maybe weighted with some scaling factor) and a categorial similarity function.
Once you have a decent similarity function, a whole bunch of algorithms will become available to you. e.g. DBSCAN (Wikipedia) or OPTICS (Wikipedia). ELKI may be of interest to you, they have a Tutorial on writing custom distance functions.
Interpretation is a separate thing. Unfortunately, few clustering algorithms will give you a human-readable interpretation of what they found. They may give you things such as a representative (e.g. the mean of a cluster in k-means), but little more. But of course you could next train a decision tree on the clustering output and try to interpret the decision tree learned from the clustering. Because the one really nice feature about decision trees, is that they are somewhat human understandable. But just like a Support Vector Machine will not give you an explanation, most (if not all) clustering algorithms will not do that either, sorry, unless you do this kind of post-processing. Plus, it will actually work with any clustering algorithm, which is a nice property if you want to compare multiple algorithms.
There was a related publication last year. It is a bit obscure and experimental (on a workshop at ECML-PKDD), and requires the data set to have a quite extensive ground truth in form of rankings. In the example, they used color similarity rankings and some labels. The key idea is to analyze the cluster and find the best explanation using the given ground truth(s). They were trying to use it to e.g. say "this cluster found is largely based on this particular shade of green, so it is not very interesting, but the other cluster cannot be explained very well, you need to investigate it closer - maybe the algorithm discovered something new here". But it was very experimental (Workshops are for work-in-progress type of research). You might be able to use this, by just using your features as ground truth. It should then detect if a cluster can be easily explained by things such as "attribute5 is approx. 0.4 with low variance". But it will not forcibly create such an explanation!
H.-P. Kriegel, E. Schubert, A. Zimek
Evaluation of Multiple Clustering Solutions
In 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011. http://dme.rwth-aachen.de/en/MultiClust2011
A common approach to solve this type of clustering problem is to define a statistical model that captures relevant characteristics of your data. Cluster assignments can be derived by using a mixture model (as in the Gaussian Mixture Model) then finding the mixture component with the highest probability for a particular data point.
In your case, each example is a vector has both real and categorical components. A simple approach is to model each component of the vector separately.
I generated a small example dataset where each example is a vector of two dimensions. The first dimension is a normally distributed variable and the second is a choice of five categories (see graph):
There are a number of frameworks that are available to run monte carlo inference for statistical models. BUGS is probably the most popular (http://www.mrc-bsu.cam.ac.uk/bugs/). I created this model in Stan (http://mc-stan.org/), which uses a different sampling technique than BUGs and is more efficient for many problems:
data {
int<lower=0> N; //number of data points
int<lower=0> C; //number of categories
real x[N]; // normally distributed component data
int y[N]; // categorical component data
}
parameters {
real<lower=0,upper=1> theta; // mixture probability
real mu[2]; // means for the normal component
simplex[C] phi[2]; // categorical distributions for the categorical component
}
transformed parameters {
real log_theta;
real log_one_minus_theta;
vector[C] log_phi[2];
vector[C] alpha;
log_theta <- log(theta);
log_one_minus_theta <- log(1.0 - theta);
for( c in 1:C)
alpha[c] <- .5;
for( k in 1:2)
for( c in 1:C)
log_phi[k,c] <- log(phi[k,c]);
}
model {
theta ~ uniform(0,1); // equivalently, ~ beta(1,1);
for (k in 1:2){
mu[k] ~ normal(0,10);
phi[k] ~ dirichlet(alpha);
}
for (n in 1:N) {
lp__ <- lp__ + log_sum_exp(log_theta + normal_log(x[n],mu[1],1) + log_phi[1,y[n]],
log_one_minus_theta + normal_log(x[n],mu[2],1) + log_phi[2,y[n]]);
}
}
I compiled and ran the Stan model and used the parameters from the final sample to compute the probability of each datapoint under each mixture component. I then assigned each datapoint to the mixture component (cluster) with higher probability to recover the cluster assignments below:
Basically, the parameters for each mixture component will give you the core characteristics of each cluster if you have created a model appropriate for your dataset.
For heterogenous, non-Euclidean data vectors as you describe, hierarchical clustering algorithms often work best. The conditional probability condition you describe can be incorporated as an ordering of attributes used to perform cluster agglomeration or division. The semantics of the resulting clusters are easy to describe.

Resources