random_configuration_model(N,E) takes to long on LightGraphs.jl - time

I'm facing problems with the generation of configurational graphs on LightGraphs. Hereafter, the vector E contains the sequence of edges. I have to generate this kind of graph iteratively inside a loop and the example below reproduces the problem.
using LightGraphs, Distributions
N=2000;c=0.01*N
α=0.625
p = α/(c+α)
E = zeros(Int64,N)
for j in 1:100
s=0
for i in 1:N
E[i] = rand(NegativeBinomial(α,p))
s += E[i]
end
if iseven(s) == false
k = rand(DiscreteUniform(1,N))
E[k] += 1
end
#show s
g = random_configuration_model(N,E)
#show j
end
At some iteration step j, it seems that g = random_configuration_model(N,E) takes unexpected (very) long time to run, since the variables that determine the complexity (N and c) remain of the same order. Making sure that the sequence is graphical with check_graphical=true doesn't help and the problem also happens. It happens only for small values of α (<1), but this parameter only affects the variance of the negative binomial distribution, and not its mean value, that is approximately c for finite N. Does anyone know something that may be causing this problem?
Edit: as a matter of completeness, I leave below how I generated the configuration random graph with iGraph (full doc: https://igraph.org/). One can find how to transform the iGraph object g2 to a LightGraph object (and more on general usage) at this tutorial by Bogumił Kamiński.
using LightGraphs, PyCall, Distributions
ig = pyimport("igraph")
s=0;N=1000;c=N*0.01;α=0.625;p=α/(c+α)
E=zeros(Int64,N)
for i in 1:N
E[i] = rand(NegativeBinomial(α,p))
s += E[i]
end
if iseven(s) == false
k = rand(DiscreteUniform(1,N))
E[k] += 1
end
g2 = ig.Graph.Realize_Degree_Sequence(E)

The reason is that random_configuration_model uses a rejection sampling approach to generate graphs.
You can already see it on quite star on 25 nodes:
julia> #time random_configuration_model(25, [24; fill(1, 24)])
14.668509 seconds (134.34 M allocations: 16.465 GiB, 10.71% gc time)
{25, 24} undirected simple Int64 graph
julia> #time random_configuration_model(25, [24; fill(1, 24)])
2.242426 seconds (20.41 M allocations: 2.501 GiB, 10.54% gc time)
{25, 24} undirected simple Int64 graph
julia> #time random_configuration_model(25, [24; fill(1, 24)])
14.490126 seconds (130.53 M allocations: 15.999 GiB, 10.77% gc time)
{25, 24} undirected simple Int64 graph
Rejection sampling is problematic when degree sequence is almost non graphic (as then the probability to "hit" a simple graph is low).
Faster approaches than rejection sampling are available if you can accept a small deviation from uniform sampling but AFAICT are not implemented in Graphs.jl. One such method that is popular is https://arxiv.org/abs/cs/0502085 which additionally puts a restriction that the graph should be connected. This method is available in iGraph.

Related

Julia: FAST way of calculating the smallest distances between two sets of points

I have 5000 3D points in a Matrix A and another 5000 3D point in a matrix B.
For each point in A i want to find the smallest distance to a point in B. These distances should be stored in an array with 5000 entries.
So far I have this solution, running in about 0.145342 seconds (23 allocations: 191.079 MiB). How can I improve this further?
using Distances
A = rand(5000, 3)
B = rand(5000, 3)
mis = #time minimum(Distances.pairwise(SqEuclidean(), A, B, dims=1), dims=2)
This is a standard way to do it as it will have a better time complexity (especially for larger data):
using NearestNeighbors
nn(KDTree(B'; leafsize = 10), A')[2] .^ 2
Two comments:
by default Euclidean distance is computed (so I square it)
by default NearestNeigbors.jl assumes observations are stored in columns (so I need B' and A' in the solution; if your original data were transposed it would not be needed; the reason why it is designed this way is that Julia uses column major matrix storage)
Generating a big distance matrix using Distances.pairwise(SqEuclidean(), A, B, dims=1) is not efficient because the main memory is pretty slow nowadays compared to CPU caches and the computing power of modern CPUs and this is not gonna be better any time soon (see "memory wall"). It is faster to compute the minimum on-the-fly using two basic nested for loops. Additionally, one can use multiple cores to compute this faster using multiple threads.
function computeMinDist(A, B)
n, m = size(A, 1), size(B, 1)
result = zeros(n)
Threads.#threads for i = 1:n
minSqDist = Inf
#inbounds for j = 1:m
dx = A[i,1] - B[j,1]
dy = A[i,2] - B[j,2]
dz = A[i,3] - B[j,3]
sqDist = dx*dx + dy*dy + dz*dz
if sqDist < minSqDist
minSqDist = sqDist
end
end
result[i] = minSqDist
end
return result
end
mis = #time computeMinDist(A, B)
Note the Julia interpreter uses 1 thread by default but this can be tuned using the environment variable JULIA_NUM_THREADS=auto or just by running it using the flag --threads=auto. See the multi-threading documentation for more information.
Performance results
Here are performance results on my i5-9600KF machine with 6 cores (with two 5000x3 matrices):
Initial implementation: 93.4 ms
This implementation: 4.4 ms
This implementation is thus 21 times faster.
Results are the same to few ULP.
Note the code can certainly be optimized further using loop tiling, and possibly by transposing A and B so the JIT can generate a more efficient implementation using SIMD instructions.

Latent factor recovery with probabilistic matrix factorization using Edward

I implemented a probabilistic matrix factorization model (R = U'V) following the example in Edward's repo:
# data
U_true = np.random.randn(D, N)
V_true = np.random.randn(D, M)
R_true = np.dot(np.transpose(U_true), V_true) + np.random.normal(0, 0.1, size=(N, M))
# model
I = tf.placeholder(tf.float32, [N, M])
U = Normal(loc=tf.zeros([D, N]), scale=tf.ones([D, N]))
V = Normal(loc=tf.zeros([D, M]), scale=tf.ones([D, M]))
R = Normal(loc=tf.matmul(tf.transpose(U), V), scale=tf.ones([N, M]))
I get a good performance when predicting the data in matrix R. However, when I evaluate the inferred traits in U and V, the error varies a lot and can get very high.
I tried with a latent space of small dimension (e.g. 2) and checked if latent traits weren't simply permuted. They sometimes get permuted but even after realigning them the error is still significant.
To throw some numbers: for a synthetic R matrix generated from U and V both normally distributed (mean 0 and variance 1), I can achieve a mean absolute error of 0.003 on R, but on U and V it's usually around 0.5.
I know this model is symmetric, but I am not sure about the implications. I would like to ask:
Is it actually possible to guarantee the recovery of the original latent traits in some way?
If so, how could it be achieved, preferably using Edward?

Randomly pick elements from a vector of counts

I'm currently trying to optimize some MATLAB/Octave code by means of an algorithmic change, but can't figure out how to deal with some randomness here. Suppose that I have a vector V of integers, with each element representing a count of some things, photons in my case. Now I want to randomly pick some amount of those "things" and create a new vector of the same size, but with the counts adjusted.
Here's how I do this at the moment:
function W = photonfilter(V, eff)
% W = photonfilter(V, eff)
% Randomly takes photons from V according to the given efficiency.
%
% Args:
% V: Input vector containing the number of emitted photons in each
% timeslot (one element is one timeslot). The elements are rounded
% to integers before processing.
% eff: Filter efficiency. On the average, every 1/eff photon will be
% taken. This value must be in the range 0 < eff <= 1.
% W: Output row vector with the same length as V and containing the number
% of received photons in each timeslot.
%
% WARNING: This function operates on a photon-by-photon basis in that it
% constructs a vector with one element per photon. The storage requirements
% therefore directly depend on sum(V), not only on the length of V.
% Round V and make it flat.
Ntot = length(V);
V = round(V);
V = V(:);
% Initialize the photon-based vector, so that each element contains
% the original index of the photon.
idxV = zeros(1, sum(V), 'uint32');
iout = 1;
for i = 1:Ntot
N = V(i);
idxV(iout:iout+N-1) = i;
iout = iout + N;
end;
% Take random photons.
idxV = idxV(randperm(length(idxV)));
idxV = idxV(1:round(length(idxV)*eff));
% Generate the output vector by placing the remaining photons back
% into their timeslots.
[W, trash] = hist(idxV, 1:Ntot);
This is a rather straightforward implementation of the description above. But it has an obvious performance drawback: The function creates a vector (idxV) containing one element per single photon. So if my V has only 1000 elements but an average count of 10000 per element, the internal vector will have 10 million elements making the function slow and heavy.
What I'd like to achieve now is not to directly optimize this code, but to use some other kind of algorithm which immediately calculates the new counts without giving each photon some kind of "identity". This must be possible somehow, but I just can't figure out how to do it.
Requirements:
The output vector W must have the same number of elements as the input vector V.
W(i) must be an integer and bounded by 0 <= W(i) <= V(i).
The expected value of sum(W) must be sum(V)*eff.
The algorithm must somehow implement this "random picking" of photons, i.e. there should not be some deterministic part like "run through V dividing all counts by the stepsize and propagating the remainders", as the whole point of this function is to bring randomness into the system.
An explicit loop over V is allowed if unavoidable, but a vectorized approach is preferable.
Any ideas how to implement something like this? A solution using only a random vector and then some trickery with probabilities and rounding would be ideal, but I haven't had any success with that so far.
Thanks! Best regards, Philipp
The method you employ to compute W is called Monte Carlo method. And indeed there can be some optimizations. Once of such is instead of calculating indices of photons, let's imagine a set of bins. Each bin has some probability and the sum of all bins' probabilities adds up to 1. We divide the segment [0, 1] into parts whose lengths are proportional to the probabilities of the bins. Now for every random number within [0, 1) that we generate we can quickly find the bin that it belongs to. Finally, we count numbers in the bins to obtain the final result. The code below illustrates the idea.
% Population size (number of photons).
N = 1000000;
% Sample size, size of V and W as well.
% For convenience of plotting, V and W are of the same size, but
% the algorithm doesn't enforce this constraint.
M = 10000;
% Number of Monte Carlo iterations, greater numbers give better quality.
K = 100000;
% Generate population of counts, use gaussian distribution to test the method.
% If implemented correctly histograms should have the same shape eventually.
V = hist(randn(1, N), M);
P = cumsum(V / sum(V));
% For every generated random value find its bin and then count the bins.
% Finally we normalize counts by the ration of N / K.
W = hist(lookup(P, rand(1, K)), M) * N / K;
% Compare distribution plots, they should be the same.
hold on;
plot(W, '+r');
plot(V, '*b');
pause
Based on the answer from Alexander Solovets, this is how the code now looks:
function W = photonfilter(V, eff, impl=1)
Ntot = length(V);
V = V(:);
if impl == 0
% Original "straightforward" solution.
V = round(V);
idxV = zeros(1, sum(V), 'uint32');
iout = 1;
for i = 1:Ntot
N = V(i);
idxV(iout:iout+N-1) = i;
iout = iout + N;
end;
idxV = idxV(randperm(length(idxV)));
idxV = idxV(1:round(length(idxV)*eff));
[W, trash] = hist(idxV, 1:Ntot);
else
% Monte Carlo approach.
Nphot = sum(V);
P = cumsum(V / Nphot);
W = hist(lookup(P, rand(1, round(Nphot * eff))), 0:Ntot-1);
end;
The results are quite comparable, as long as eff if not too close to 1 (with eff=1, the original solution yields W=V while the Monte Carlo approach still has some randomness, thereby violating the upper bound constraints).
Test in the interactive Octave shell:
octave:1> T=linspace(0,10*pi,10000);
octave:2> V=100*(1+sin(T));
octave:3> W1=photonfilter(V, 0.1, 0);
octave:4> W2=photonfilter(V, 0.1, 1);
octave:5> plot(T,V,T,W1,T,W2);
octave:6> legend('V','Random picking','Monte Carlo')
octave:7> sum(W1)
ans = 100000
octave:8> sum(W2)
ans = 100000
Plot:

Parallelising gradient calculation in Julia

I was persuaded some time ago to drop my comfortable matlab programming and start programming in Julia. I have been working for a long with neural networks and I thought that, now with Julia, I could get things done faster by parallelising the calculation of the gradient.
The gradient need not be calculated on the entire dataset in one go; instead one can split the calculation. For instance, by splitting the dataset in parts, we can calculate a partial gradient on each part. The total gradient is then calculated by adding up the partial gradients.
Though, the principle is simple, when I parallelise with Julia I get a performance degradation, i.e. one process is faster then two processes! I am obviously doing something wrong... I have consulted other questions asked in the forum but I could still not piece together an answer. I think my problem lies in that there is a lot of unnecessary data moving going on, but I can't fix it properly.
In order to avoid posting messy neural network code, I am posting below a simpler example that replicates my problem in the setting of linear regression.
The code-block below creates some data for a linear regression problem. The code explains the constants, but X is the matrix containing the data inputs. We randomly create a weight vector w which when multiplied with X creates some targets Y.
######################################
## CREATE LINEAR REGRESSION PROBLEM ##
######################################
# This code implements a simple linear regression problem
MAXITER = 100 # number of iterations for simple gradient descent
N = 10000 # number of data items
D = 50 # dimension of data items
X = randn(N, D) # create random matrix of data, data items appear row-wise
Wtrue = randn(D,1) # create arbitrary weight matrix to generate targets
Y = X*Wtrue # generate targets
The next code-block below defines functions for measuring the fitness of our regression (i.e. the negative log-likelihood) and the gradient of the weight vector w:
####################################
## DEFINE FUNCTIONS ##
####################################
#everywhere begin
#-------------------------------------------------------------------
function negative_loglikelihood(Y,X,W)
#-------------------------------------------------------------------
# number of data items
N = size(X,1)
# accumulate here log-likelihood
ll = 0
for nn=1:N
ll = ll - 0.5*sum((Y[nn,:] - X[nn,:]*W).^2)
end
return ll
end
#-------------------------------------------------------------------
function negative_loglikelihood_grad(Y,X,W, first_index,last_index)
#-------------------------------------------------------------------
# number of data items
N = size(X,1)
# accumulate here gradient contributions by each data item
grad = zeros(similar(W))
for nn=first_index:last_index
grad = grad + X[nn,:]' * (Y[nn,:] - X[nn,:]*W)
end
return grad
end
end
Note that the above functions are on purpose not vectorised! I choose not to vectorise, as the final code (the neural network case) will also not admit any vectorisation (let us not get into more details regarding this).
Finally, the code-block below shows a very simple gradient descent that tries to recover the parameter weight vector w from the given data Y and X:
####################################
## SOLVE LINEAR REGRESSION ##
####################################
# start from random initial solution
W = randn(D,1)
# learning rate, set here to some arbitrary small constant
eta = 0.000001
# the following for-loop implements simple gradient descent
for iter=1:MAXITER
# get gradient
ref_array = Array(RemoteRef, nworkers())
# let each worker process part of matrix X
for index=1:length(workers())
# first index of subset of X that worker should work on
first_index = (index-1)*int(ceil(N/nworkers())) + 1
# last index of subset of X that worker should work on
last_index = min((index)*(int(ceil(N/nworkers()))), N)
ref_array[index] = #spawn negative_loglikelihood_grad(Y,X,W, first_index,last_index)
end
# gather the gradients calculated on parts of matrix X
grad = zeros(similar(W))
for index=1:length(workers())
grad = grad + fetch(ref_array[index])
end
# now that we have the gradient we can update parameters W
W = W + eta*grad;
# report progress, monitor optimisation
#printf("Iter %d neg_loglikel=%.4f\n",iter, negative_loglikelihood(Y,X,W))
end
As is hopefully visible, I tried to parallelise the calculation of the gradient in the easiest possible way here. My strategy is to break the calculation of the gradient in as many parts as available workers. Each worker is required to work only on part of matrix X, which part is specified by first_index and last_index. Hence, each worker should work with X[first_index:last_index,:]. For instance, for 4 workers and N = 10000, the work should be divided as follows:
worker 1 => first_index = 1, last_index = 2500
worker 2 => first_index = 2501, last_index = 5000
worker 3 => first_index = 5001, last_index = 7500
worker 4 => first_index = 7501, last_index = 10000
Unfortunately, this entire code works faster if I have only one worker. If add more workers via addprocs(), the code runs slower. One can aggravate this issue by create more data items, for instance use instead N=20000.
With more data items, the degradation is even more pronounced.
In my particular computing environment with N=20000 and one core, the code runs in ~9 secs. With N=20000 and 4 cores it takes ~18 secs!
I tried many many different things inspired by the questions and answers in this forum but unfortunately to no avail. I realise that the parallelisation is naive and that data movement must be the problem, but I have no idea how to do it properly. It seems that the documentation is also a bit scarce on this issue (as is the nice book by Ivo Balbaert).
I would appreciate your help as I have been stuck for quite some while with this and I really need it for my work. For anyone wanting to run the code, to save you the trouble of copying-pasting you can get the code here.
Thanks for taking the time to read this very lengthy question! Help me turn this into a model answer that anyone new in Julia can then consult!
I would say that GD is not a good candidate for parallelizing it using any of the proposed methods: either SharedArray or DistributedArray, or own implementation of distribution of chunks of data.
The problem does not lay in Julia, but in the GD algorithm.
Consider the code:
Main process:
for iter = 1:iterations #iterations: "the more the better"
δ = _gradient_descent_shared(X, y, θ)
θ = θ - α * (δ/N)
end
The problem is in the above for-loop which is a must. No matter how good _gradient_descent_shared is, the total number of iterations kills the noble concept of the parallelization.
After reading the question and the above suggestion I've started implementing GD using SharedArray. Please note, I'm not an expert in the field of SharedArrays.
The main process parts (simple implementation without regularization):
run_gradient_descent(X::SharedArray, y::SharedArray, θ::SharedArray, α, iterations) = begin
N = length(y)
for iter = 1:iterations
δ = _gradient_descent_shared(X, y, θ)
θ = θ - α * (δ/N)
end
θ
end
_gradient_descent_shared(X::SharedArray, y::SharedArray, θ::SharedArray, op=(+)) = begin
if size(X,1) <= length(procs(X))
return _gradient_descent_serial(X, y, θ)
else
rrefs = map(p -> (#spawnat p _gradient_descent_serial(X, y, θ)), procs(X))
return mapreduce(r -> fetch(r), op, rrefs)
end
end
The code common to all workers:
#= Returns the range of indices of a chunk for every worker on which it can work.
The function splits data examples (N rows into chunks),
not the parts of the particular example (features dimensionality remains intact).=#
#everywhere function _worker_range(S::SharedArray)
idx = indexpids(S)
if idx == 0
return 1:size(S,1), 1:size(S,2)
end
nchunks = length(procs(S))
splits = [round(Int, s) for s in linspace(0,size(S,1),nchunks+1)]
splits[idx]+1:splits[idx+1], 1:size(S,2)
end
#Computations on the chunk of the all data.
#everywhere _gradient_descent_serial(X::SharedArray, y::SharedArray, θ::SharedArray) = begin
prange = _worker_range(X)
pX = sdata(X[prange[1], prange[2]])
py = sdata(y[prange[1],:])
tempδ = pX' * (pX * sdata(θ) .- py)
end
The data loading and training. Let me assume that we have:
features in X::Array of the size (N,D), where N - number of examples, D-dimensionality of the features
labels in y::Array of the size (N,1)
The main code might look like this:
X=[ones(size(X,1)) X] #adding the artificial coordinate
N, D = size(X)
MAXITER = 500
α = 0.01
initialθ = SharedArray(Float64, (D,1))
sX = convert(SharedArray, X)
sy = convert(SharedArray, y)
X = nothing
y = nothing
gc()
finalθ = run_gradient_descent(sX, sy, initialθ, α, MAXITER);
After implementing this and run (on 8-cores of my Intell Clore i7) I got a very slight acceleration over serial GD (1-core) on my training multiclass (19 classes) training data (715 sec for serial GD / 665 sec for shared GD).
If my implementation is correct (please check this out - I'm counting on that) then parallelization of the GD algorithm is not worth of that. Definitely you might get better acceleration using stochastic GD on 1-core.
If you want to reduce the amount of data movement, you should strongly consider using SharedArrays. You could preallocate just one output vector, and pass it as an argument to each worker. Each worker sets a chunk of it, just as you suggested.

Fast solution to Subset sum

Consider this way of solving the Subset sum problem:
def subset_summing_to_zero (activities):
subsets = {0: []}
for (activity, cost) in activities.iteritems():
old_subsets = subsets
subsets = {}
for (prev_sum, subset) in old_subsets.iteritems():
subsets[prev_sum] = subset
new_sum = prev_sum + cost
new_subset = subset + [activity]
if 0 == new_sum:
new_subset.sort()
return new_subset
else:
subsets[new_sum] = new_subset
return []
I have it from here:
http://news.ycombinator.com/item?id=2267392
There is also a comment which says that it is possible to make it "more efficient".
How?
Also, are there any other ways to solve the problem which are at least as fast as the one above?
Edit
I'm interested in any kind of idea which would lead to speed-up. I found:
https://en.wikipedia.org/wiki/Subset_sum_problem#cite_note-Pisinger09-2
which mentions a linear time algorithm. But I don't have the paper, perhaps you, dear people, know how it works? An implementation perhaps? Completely different approach perhaps?
Edit 2
There is now a follow-up:
Fast solution to Subset sum algorithm by Pisinger
I respect the alacrity with which you're trying to solve this problem! Unfortunately, you're trying to solve a problem that's NP-complete, meaning that any further improvement that breaks the polynomial time barrier will prove that P = NP.
The implementation you pulled from Hacker News appears to be consistent with the pseudo-polytime dynamic programming solution, where any additional improvements must, by definition, progress the state of current research into this problem and all of its algorithmic isoforms. In other words: while a constant speedup is possible, you're very unlikely to see an algorithmic improvement to this solution to the problem in the context of this thread.
However, you can use an approximate algorithm if you require a polytime solution with a tolerable degree of error. In pseudocode blatantly stolen from Wikipedia, this would be:
initialize a list S to contain one element 0.
for each i from 1 to N do
let T be a list consisting of xi + y, for all y in S
let U be the union of T and S
sort U
make S empty
let y be the smallest element of U
add y to S
for each element z of U in increasing order do
//trim the list by eliminating numbers close to one another
//and throw out elements greater than s
if y + cs/N < z ≤ s, set y = z and add z to S
if S contains a number between (1 − c)s and s, output yes, otherwise no
Python implementation, preserving the original terms as closely as possible:
from bisect import bisect
def ssum(X,c,s):
""" Simple impl. of the polytime approximate subset sum algorithm
Returns True if the subset exists within our given error; False otherwise
"""
S = [0]
N = len(X)
for xi in X:
T = [xi + y for y in S]
U = set().union(T,S)
U = sorted(U) # Coercion to list
S = []
y = U[0]
S.append(y)
for z in U:
if y + (c*s)/N < z and z <= s:
y = z
S.append(z)
if not c: # For zero error, check equivalence
return S[bisect(S,s)-1] == s
return bisect(S,(1-c)*s) != bisect(S,s)
... where X is your bag of terms, c is your precision (between 0 and 1), and s is the target sum.
For more details, see the Wikipedia article.
(Additional reference, further reading on CSTheory.SE)
While my previous answer describes the polytime approximate algorithm to this problem, a request was specifically made for an implementation of Pisinger's polytime dynamic programming solution when all xi in x are positive:
from bisect import bisect
def balsub(X,c):
""" Simple impl. of Pisinger's generalization of KP for subset sum problems
satisfying xi >= 0, for all xi in X. Returns the state array "st", which may
be used to determine if an optimal solution exists to this subproblem of SSP.
"""
if not X:
return False
X = sorted(X)
n = len(X)
b = bisect(X,c)
r = X[-1]
w_sum = sum(X[:b])
stm1 = {}
st = {}
for u in range(c-r+1,c+1):
stm1[u] = 0
for u in range(c+1,c+r+1):
stm1[u] = 1
stm1[w_sum] = b
for t in range(b,n+1):
for u in range(c-r+1,c+r+1):
st[u] = stm1[u]
for u in range(c-r+1,c+1):
u_tick = u + X[t-1]
st[u_tick] = max(st[u_tick],stm1[u])
for u in reversed(range(c+1,c+X[t-1]+1)):
for j in reversed(range(stm1[u],st[u])):
u_tick = u - X[j-1]
st[u_tick] = max(st[u_tick],j)
return st
Wow, that was headache-inducing. This needs proofreading, because, while it implements balsub, I can't define the right comparator to determine if the optimal solution to this subproblem of SSP exists.
I don't know much python, but there is an approach called meet in the middle.
Pseudocode:
Divide activities into two subarrays, A1 and A2
for both A1 and A2, calculate subsets hashes, H1 and H2, the way You do it in Your question.
for each (cost, a1) in H1
if(H2.contains(-cost))
return a1 + H2[-cost];
This will allow You to double the number of elements of activities You can handle in reasonable time.
I apologize for "discussing" the problem, but a "Subset Sum" problem where the x values are bounded is not the NP version of the problem. Dynamic programing solutions are known for bounded x value problems. That is done by representing the x values as the sum of unit lengths. The Dynamic programming solutions have a number of fundamental iterations that is linear with that total length of the x's. However, the Subset Sum is in NP when the precision of the numbers equals N. That is, the number or base 2 place values needed to state the x's is = N. For N = 40, the x's have to be in the billions. In the NP problem the unit length of the x's increases exponentially with N.That is why the dynamic programming solutions are not a polynomial time solution to the NP Subset Sum problem. That being the case, there are still practical instances of the Subset Sum problem where the x's are bounded and the dynamic programming solution is valid.
Here are three ways to make the code more efficient:
The code stores a list of activities for each partial sum. It is more efficient in terms of both memory and time to just store the most recent activity needed to make the sum, and work out the rest by backtracking once a solution is found.
For each activity the dictionary is repopulated with the old contents (subsets[prev_sum] = subset). It is faster to simply grow a single dictionary
Splitting the values in two and applying a meet in the middle approach.
Applying the first two optimisations results in the following code which is more than 5 times faster:
def subset_summing_to_zero2 (activities):
subsets = {0:-1}
for (activity, cost) in activities.iteritems():
for prev_sum in subsets.keys():
new_sum = prev_sum + cost
if 0 == new_sum:
new_subset = [activity]
while prev_sum:
activity = subsets[prev_sum]
new_subset.append(activity)
prev_sum -= activities[activity]
return sorted(new_subset)
if new_sum in subsets: continue
subsets[new_sum] = activity
return []
Also applying the third optimisation results in something like:
def subset_summing_to_zero3 (activities):
A=activities.items()
mid=len(A)//2
def make_subsets(A):
subsets = {0:-1}
for (activity, cost) in A:
for prev_sum in subsets.keys():
new_sum = prev_sum + cost
if new_sum and new_sum in subsets: continue
subsets[new_sum] = activity
return subsets
subsets = make_subsets(A[:mid])
subsets2 = make_subsets(A[mid:])
def follow_trail(new_subset,subsets,s):
while s:
activity = subsets[s]
new_subset.append(activity)
s -= activities[activity]
new_subset=[]
for s in subsets:
if -s in subsets2:
follow_trail(new_subset,subsets,s)
follow_trail(new_subset,subsets2,-s)
if len(new_subset):
break
return sorted(new_subset)
Define bound to be the largest absolute value of the elements.
The algorithmic benefit of the meet in the middle approach depends a lot on bound.
For a low bound (e.g. bound=1000 and n=300) the meet in the middle only gets a factor of about 2 improvement other the first improved method. This is because the dictionary called subsets is densely populated.
However, for a high bound (e.g. bound=100,000 and n=30) the meet in the middle takes 0.03 seconds compared to 2.5 seconds for the first improved method (and 18 seconds for the original code)
For high bounds, the meet in the middle will take about the square root of the number of operations of the normal method.
It may seem surprising that meet in the middle is only twice as fast for low bounds. The reason is that the number of operations in each iteration depends on the number of keys in the dictionary. After adding k activities we might expect there to be 2**k keys, but if bound is small then many of these keys will collide so we will only have O(bound.k) keys instead.
Thought I'd share my Scala solution for the discussed pseudo-polytime algorithm described in wikipedia. It's a slightly modified version: it figures out how many unique subsets there are. This is very much related to a HackerRank problem described at https://www.hackerrank.com/challenges/functional-programming-the-sums-of-powers. Coding style might not be excellent, I'm still learning Scala :) Maybe this is still helpful for someone.
object Solution extends App {
var input = "1000\n2"
System.setIn(new ByteArrayInputStream(input.getBytes()))
println(calculateNumberOfWays(readInt, readInt))
def calculateNumberOfWays(X: Int, N: Int) = {
val maxValue = Math.pow(X, 1.0/N).toInt
val listOfValues = (1 until maxValue + 1).toList
val listOfPowers = listOfValues.map(value => Math.pow(value, N).toInt)
val lists = (0 until maxValue).toList.foldLeft(List(List(0)): List[List[Int]]) ((newList, i) =>
newList :+ (newList.last union (newList.last.map(y => y + listOfPowers.apply(i)).filter(z => z <= X)))
)
lists.last.count(_ == X)
}
}

Resources