Dynamic memory allocation in process - memory-management

How can we validate the dynamically allocated memory via malloc() is actually being released after free() call?

Related

windows memory management: Difference between VirtualAlloc() and heap functions [duplicate]

There are lots of method to allocate memory in Windows environment, such as VirtualAlloc, HeapAlloc, malloc, new.
Thus, what's the difference among them?
Each API is for different uses. Each one also requires that you use the correct deallocation/freeing function when you're done with the memory.
VirtualAlloc
A low-level, Windows API that provides lots of options, but is mainly useful for people in fairly specific situations. Can only allocate memory in (edit: not 4KB) larger chunks. There are situations where you need it, but you'll know when you're in one of these situations. One of the most common is if you have to share memory directly with another process. Don't use it for general-purpose memory allocation. Use VirtualFree to deallocate.
HeapAlloc
Allocates whatever size of memory you ask for, not in big chunks than VirtualAlloc. HeapAlloc knows when it needs to call VirtualAlloc and does so for you automatically. Like malloc, but is Windows-only, and provides a couple more options. Suitable for allocating general chunks of memory. Some Windows APIs may require that you use this to allocate memory that you pass to them, or use its companion HeapFree to free memory that they return to you.
malloc
The C way of allocating memory. Prefer this if you are writing in C rather than C++, and you want your code to work on e.g. Unix computers too, or someone specifically says that you need to use it. Doesn't initialise the memory. Suitable for allocating general chunks of memory, like HeapAlloc. A simple API. Use free to deallocate. Visual C++'s malloc calls HeapAlloc.
new
The C++ way of allocating memory. Prefer this if you are writing in C++. It puts an object or objects into the allocated memory, too. Use delete to deallocate (or delete[] for arrays). Visual studio's new calls HeapAlloc, and then maybe initialises the objects, depending on how you call it.
In recent C++ standards (C++11 and above), if you have to manually use delete, you're doing it wrong and should use a smart pointer like unique_ptr instead. From C++14 onwards, the same can be said of new (replaced with functions such as make_unique()).
There are also a couple of other similar functions like SysAllocString that you may be told you have to use in specific circumstances.
It is very important to understand the distinction between memory allocation APIs (in Windows) if you plan on using a language that requires memory management (like C or C++.) And the best way to illustrate it IMHO is with a diagram:
Note that this is a very simplified, Windows-specific view.
The way to understand this diagram is that the higher on the diagram a memory allocation method is, the higher level implementation it uses. But let's start from the bottom.
Kernel-Mode Memory Manager
It provides all memory reservations & allocations for the operating system, as well as support for memory-mapped files, shared memory, copy-on-write operations, etc. It's not directly accessible from the user-mode code, so I'll skip it here.
VirtualAlloc / VirtualFree
These are the lowest level APIs available from the user mode. The VirtualAlloc function basically invokes ZwAllocateVirtualMemory that in turn does a quick syscall to ring0 to relegate further processing to the kernel memory manager. It is also the fastest method to reserve/allocate block of new memory from all available in the user mode.
But it comes with two main conditions:
It only allocates memory blocks aligned on the system granularity boundary.
It only allocates memory blocks of the size that is the multiple of the system granularity.
So what is this system granularity? You can get it by calling GetSystemInfo. It is returned as the dwAllocationGranularity parameter. Its value is implementation (and possibly hardware) specific, but on many 64-bit Windows systems it is set at 0x10000 bytes, or 64K.
So what all this means, is that if you try to allocate, say just an 8 byte memory block with VirtualAlloc:
void* pAddress = VirtualAlloc(NULL, 8, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
If successful, pAddress will be aligned on the 0x10000 byte boundary. And even though you requested only 8 bytes, the actual memory block that you will get will be the entire page (or, something like 4K bytes. The exact page size is returned in the dwPageSize parameter.) But, on top of that, the entire memory block spanning 0x10000 bytes (or 64K in most cases) from pAddress will not be available for any further allocations. So in a sense, by allocating 8 bytes you could as well be asking for 65536.
So the moral of the story here is not to substitute VirtualAlloc for generic memory allocations in your application. It must be used for very specific cases, as is done with the heap below. (Usually for reserving/allocating large blocks of memory.)
Using VirtualAlloc incorrectly can lead to severe memory fragmentation.
HeapCreate / HeapAlloc / HeapFree / HeapDestroy
In a nutshell, the heap functions are basically a wrapper for VirtualAlloc function. Other answers here provide a pretty good concept of it. I'll add that, in a very simplistic view, the way heap works is this:
HeapCreate reserves a large block of virtual memory by calling VirtualAlloc internally (or ZwAllocateVirtualMemory to be specific). It also sets up an internal data structure that can track further smaller size allocations within the reserved block of virtual memory.
Any calls to HeapAlloc and HeapFree do not actually allocate/free any new memory (unless, of course the request exceeds what has been already reserved in HeapCreate) but instead they meter out (or commit) a previously reserved large chunk, by dissecting it into smaller memory blocks that a user requests.
HeapDestroy in turn calls VirtualFree that actually frees the virtual memory.
So all this makes heap functions perfect candidates for generic memory allocations in your application. It is great for arbitrary size memory allocations. But a small price to pay for the convenience of the heap functions is that they introduce a slight overhead over VirtualAlloc when reserving larger blocks of memory.
Another good thing about heap is that you don't really need to create one. It is generally created for you when your process starts. So one can access it by calling GetProcessHeap function.
malloc / free
Is a language-specific wrapper for the heap functions. Unlike HeapAlloc, HeapFree, etc. these functions will work not only if your code is compiled for Windows, but also for other operating systems (such as Linux, etc.)
This is a recommended way to allocate/free memory if you program in C. (Unless, you're coding a specific kernel mode device driver.)
new / delete
Come as a high level (well, for C++) memory management operators. They are specific for the C++ language, and like malloc for C, are also the wrappers for the heap functions. They also have a whole bunch of their own code that deals C++-specific initialization of constructors, deallocation in destructors, raising an exception, etc.
These functions are a recommended way to allocate/free memory and objects if you program in C++.
Lastly, one comment I want to make about what has been said in other responses about using VirtualAlloc to share memory between processes. VirtualAlloc by itself does not allow sharing of its reserved/allocated memory with other processes. For that one needs to use CreateFileMapping API that can create a named virtual memory block that can be shared with other processes. It can also map a file on disk into virtual memory for read/write access. But that is another topic.
VirtualAlloc is a specialized allocation of the OS virtual memory (VM) system. Allocations in the VM system must be made at an allocation granularity which (the allocation granularity) is architecture dependent. Allocation in the VM system is one of the most basic forms of memory allocation. VM allocations can take several forms, memory is not necessarily dedicated or physically backed in RAM (though it can be). VM allocation is typically a special purpose type of allocation, either because of the allocation has to
be very large,
needs to be shared,
must be aligned on a particular value (performance reasons) or
the caller need not use all of this memory at once...
etc...
HeapAlloc is essentially what malloc and new both eventually call. It is designed to be very fast and usable under many different types of scenarios of a general purpose allocation. It is the "Heap" in a classic sense. Heaps are actually setup by a VirtualAlloc, which is what is used to initially reserve allocation space from the OS. After the space is initialized by VirtualAlloc, various tables, lists and other data structures are configured to maintain and control the operation of the HEAP. Some of that operation is in the form of dynamically sizing (growing and shrinking) the heap, adapting the heap to particular usages (frequent allocations of some size), etc..
new and malloc are somewhat the same, malloc is essentially an exact call into HeapAlloc( heap-id-default ); new however, can [additionally] configure the allocated memory for C++ objects. For a given object, C++ will store vtables on the heap for each caller. These vtables are redirects for execution and form part of what gives C++ it's OO characteristics like inheritance, function overloading, etc...
Some other common allocation methods like _alloca() and _malloca() are stack based; FileMappings are really allocated with VirtualAlloc and set with particular bit flags which designate those mappings to be of type FILE.
Most of the time, you should allocate memory in a way which is consistent with the use of that memory ;). new in C++, malloc for C, VirtualAlloc for massive or IPC cases.
*** Note, large memory allocations done by HeapAlloc are actually shipped off to VirtualAlloc after some size (couple hundred k or 16 MB or something I forget, but fairly big :) ).
*** EDIT
I briefly remarked about IPC and VirtualAlloc, there is also something very neat about a related VirtualAlloc which none of the responders to this question have discussed.
VirtualAllocEx is what one process can use to allocate memory in an address space of a different process. Most typically, this is used in combination to get remote execution in the context of another process via CreateRemoteThread (similar to CreateThread, the thread is just run in the other process).
In outline:
VirtualAlloc, HeapAlloc etc. are Windows APIs that allocate memory of various types from the OS directly. VirtualAlloc manages pages in the Windows virtual memory system, while HeapAlloc allocates from a specific OS heap. Frankly, you are unlikely to ever need to use eiither of them.
malloc is a Standard C (and C++) library function that allocates memory to your process. Implementations of malloc will typically use one of the OS APIs to create a pool of memory when your app starts and then allocate from it as you make malloc requests
new is a Standard C++ operator which allocates memory and then calls constructors appropriately on that memory. It may be implemented in terms of malloc or in terms of the OS APIs, in which case it too will typically create a memory pool on application startup.
VirtualAlloc ===> sbrk() under UNIX
HeapAlloc ====> malloc() under UNIX
VirtualAlloc => Allocates straight into virtual memory, you reserve/commit in blocks. This is great for large allocations, for example large arrays.
HeapAlloc / new => allocates the memory on the default heap (or any other heap that you may create). This allocates per object and is great for smaller objects. The default heap is serializable therefore it has guarantee thread allocation (this can cause some issues on high performance scenarios and that's why you can create your own heaps).
malloc => uses the C runtime heap, similar to HeapAlloc but it is common for compatibility scenarios.
In a nutshell, the heap is just a chunk of virtual memory that is governed by a heap manager (rather than raw virtual memory)
The last model on the memory world is memory mapped files, this scenario is great for large chunk of data (like large files). This is used internally when you open an EXE (it does not load the EXE in memory, just creates a memory mapped file).

SIGKILL while allocating memory in C++ using calloc

This question is a follow-up to Why does malloc() or new never return NULL? and SIGKILL while allocating memory in C++:
From the answers there I can understand why a program would be killed when trying to write to memory which was "successfully" allocated by malloc. However, I see the same problem when using calloc (on SLC and Ubuntu):
Instead of returning a null pointer, the program is SIGKILLed, so checking the return value of calloc is futile. But calloc should not be affected by the "overcommit feature"? (Unless it is relying on malloc behind the scenes...)
From proc /proc/sys/vm/overcommit_memory section
The amount of memory presently allocated on the system. The committed memory is a sum of all of the memory which has been allocated by processes, even if it has not been "used" by them as of yet. A process which allocates 1GB of memory (using malloc(3) or similar), but only touches 300MB of that memory will only show up as using 300MB of memory even if it has the address space allocated for the entire 1GB. This 1GB is memory which has been "committed" to by the VM and can be used at any time by the allocating application. With strict overcommit enabled on the system (mode 2 /proc/sys/vm/overcommit_memory), allocations which would exceed the CommitLimit (detailed above) will not be permitted. This is useful if one needs to guarantee that processes will not fail due to lack of memory once that memory has been successfully allocated.
Although only malloc is explicitly listed, it does say similar, calloc (and realloc) are the similar. It has the same issue as malloc on this matter.

how do we use kmalloc in linux driver code

How will I come to know that where exactly or at what point I should use the kmalloc() to allocate a memory to the device in the device driver?
Is it during initialization or during open? As in malloc,wil kmalloc allocates memory dynamically?
In general, you can use kmalloc() when you need physically contigous memory in kernel space.
You can use this during init/open depending on your use case.
If you kmalloc in init() but never use the device, then memory allocated is waste.
If kmalloc is used in open(), memory allocated is actually used because memory is allocated only if device is used.
Also, note that you can use vmalloc() in kernel in case you are not in need of physically contigous memory allocation.
It depends on when you need it. There is no hard and fast rule.
For eg, in the i2c driver in linux kernel, there are two kmalloc calls and none in initialization or any specific function.
And yes, it acts similar to user space malloc call and allocates memory dynamically.

Difference between kmalloc and kmem_cache_alloc

What is difference between kmem_cache_alloc and kmalloc() in kernel memory allocation? which one is used when?
Kmalloc - allocates contiguous region from the physical memory. But keep in mind, allocating and free'ing memory is a lot of work.
Kmem_cache_alloc - Here, your process keeps some copies of the some pre-defined size objects pre-allocated. Say you have struct that you know you will be requiring very frequently, so instead of allocating it from the main memory (kmalloc) when you need it, you already keep multiple copies of it allocated & when you want it, it returns the address of the block already allocated (saves a lot of time). Similarly, when you free it, you don't give it back, it actually isn't free'd, it goes back to the allocated pool so that if some process again asks for it, you can return this address of the already allocated struct.
kmalloc: It uses the generic slab caches available to any kernel code. so your module will share slab cache with other components in kernel.
kmem_cache_alloc: It will allocate objects from a dedicated slab cache created by kmem_cache_create. If you specifically want a better slab cache management dedicated to your module only, that too for a specific type of objects, use kmem_cache_create followed by kmem_cache_alloc. USB/SCSI drivers use this. kmem_cache_create takes sizeof your object you want to create slab of, a name which appears in /proc/slabinfo and flags to govern behavior of your slab cache.
Ref: https://www.mail-archive.com/kernelnewbies#nl.linux.org/msg13191.html & LDD

Linux page allocation

In linux if malloc can't allocate data chunk from preallocated page. it uses mmap() or brk() to assign new pages. I wanted to clarify a few things :
I don't understand the following statment , I thought that when I use mmap() or brk() the kernel maps me a whole page. but the allocator alocates me only what I asked for from that new page? In this case trying to access unallocated space (In the newly mapped page) will not cause a page fault? (I understand that its not recommended )
The libc allocator manages each page: slicing them into smaller blocks, assigning them to processes, freeing them, and so on. For example, if your program uses 4097 bytes total, you need to use two pages, even though in reality the allocator gives you somewhere between 4105 to 4109 bytes
How does the allocator knows the VMA bounders ?(I assume no system call used) because the VMA struct that hold that information can only get accessed from kernel mode?
The system-level memory allocation (via mmap and brk) is all page-aligned and page-sized. This means if you use malloc (or other libc API that allocates memory) some small amount of memory (say 10 bytes), you are guaranteed that all the other bytes on that page of memory are readable without triggering a page fault.
Malloc and family do their own bookkeeping within the pages returned from the OS, so the mmap'd pages used by libc also contain a bunch of malloc metadata, in addition to whatever space you've allocated.
The libc allocator knows where everything is because it invokes the brk() and mmap() calls. If it invokes mmap() it passes in a size, and the kernel returns a start address. Then the libc allocator just stores those values in its metadata.
Doug Lea's malloc implementation is a very, very well documented memory allocator implementation and its comments will shed a lot of light on how allocators work in general:
http://g.oswego.edu/dl/html/malloc.html

Resources