Is there a general algorithm to flatten nested lhs cases in functional programming languages? - algorithm

Functional programming languages, like Haskell, allow users to define functions using an equational notation, where the left-hand side has several pattern arguments that can be matched, with arbitrary many nests. For example:
(fun (Ctr A A) (Foo (Tic X)) a b c d e) = a
(fun (Ctr A B) (Foo (Tac Y)) a b c d e) = b
(fun (Ctr B A) (Bar (Tic X)) a b c d e) = c
(fun (Ctr B B) (Bar (Tac Y)) a b c d e) = d
(fun x y a b c d e) = (df x y a b c d e)
Suppose, though, that you wanted to compile that function to a language that didn't allow nested pattern matches. That is, you'd have to flatten these clauses into a series of functions that, grouped together, would be equivalent to fun. For example, in the case above, you could flatten it as follows:
(fun (Ctr x1 x2) (Foo x3) a b c d e) = (fun_0 x1 x2 x3 a b c d e)
(fun (Ctr x1 x2) (Bar x3) a b c d e) = (fun_1 x1 x2 x3 a b c d e)
(fun x y a b c d e) = (df x y a b c d e)
(fun_0 A A (Tic x0) a b c d e) = (fun_0_0 x0 a b c d e)
(fun_0 A B (Tac x0) a b c d e) = (fun_0_1 x0 a b c d e)
(fun_0 x y z a b c d e) = (df (Ctr x y) (Foo z) a b c d e)
(fun_1 B A (Tic x0) a b c d e) = (fun_1_0 x0 a b c d e)
(fun_1 B B (Tac x0) a b c d e) = (fun_1_1 x0 a b c d e)
(fun_1 x y z a b c d e) = (df (Ctr x y) (Bar z) a b c d e)
(fun_0_0 X a b c d e) = a
(fun_0_0 x a b c d e) = (df (Ctr A A) (Foo (Tic x)) a b c d e)
(fun_0_1 Y a b c d e) = b
(fun_0_1 x a b c d e) = (df (Ctr A B) (Foo (Tac x)) a b c d e)
(fun_1_0 X a b c d e) = c
(fun_1_0 x a b c d e) = (df (Ctr B A) (Bar (Tic x)) a b c d e)
(fun_1_1 Y a b c d e) = d
(fun_1_1 x a b c d e) = (df (Ctr B B) (Bar (Tac x)) a b c d e)
My question is: is there a general algorithm that flattens nested lhs pattern matches into un-nested clauses, with the lowest amount of clauses possible?

Chapter 4 of Simon PJ's "The Implementation of Functional Programming Languages" is dedicated to this topic. See here for a pdf: https://www.microsoft.com/en-us/research/wp-content/uploads/1987/01/slpj-book-1987-small.pdf
The chapter is coauthored by Phil Wadler, one of the designers of Haskell.
While this book uses a pre-Haskell style syntax, the ideas carry over. When GADTs, pattern-match completeness etc are involved, you'll need to look at newer papers; but the basic idea/algorithms remain the same.

Related

Implementing LLL algorithm in Haskell

I'm implementing the LLL basis reduction algorithm in Haskell. I'm basing my code on the pseudocode on Wikipedia. Here is what I have so far. Apologies for the code dump; I strongly suspect the issue lies in lll but I'm giving everything just in case.
import Linear as L
f v x = v `L.dot` x
gram_schmidt b =
let aux vs us =
case vs of
v:t -> let vus = map (\u -> project u v) us
s = foldr (^+^) zero vus
u = v ^-^ s in
aux t (us++[u])
[] -> us
in aux b []
swap :: Int -> Int -> [a] -> [a]
swap i j xs =
let elemI = xs !! i
elemJ = xs !! j
left = take i xs
middle = take (j - i - 1) (drop (i + 1) xs)
right = drop (j + 1) xs
in left ++ [elemJ] ++ middle ++ [elemI] ++ right
update i xs new =
let left = take (i-1) xs
right = drop (i) xs
in left ++ [new] ++ right
sort_vecs vs = map snd (sort (zip (map norm vs) vs))
lll :: Int -> [[Double]] -> Double -> [[Double]]
lll d b delta =
let b' = gram_schmidt b
aux :: [[Double]] -> [[Double]] -> Int -> [[Double]]
aux b b' k =
if k >= d then
b
else
let aux2 :: [[Double]] -> [[Double]] -> Int -> [[Double]]
aux2 b b' j =
if j < 0 then
let mu = (f (b!!k) (b'!!(k-1))) / (f (b'!!(k-1)) (b'!!(k-1))) in
if f (b'!!k) (b'!!k) >= (delta-mu^2) * f (b'!!(k-1)) (b'!!(k-1)) then
aux b b' (k+1)
else
let bb = swap k (k-1) b
bb' = gram_schmidt bb in
aux bb bb' (max (k-1) 1)
else
let mu = (f (b!!k) (b'!!j)) / (f (b'!!j) (b'!!j)) in
if abs mu > 0.5 then
let bk = b!!k
bj = b!!j
bb = update k b (bk ^-^ (fromIntegral (round mu)) *^ bj)
bb' = gram_schmidt bb in
aux2 bb bb' (j-1)
else
aux2 b b' (j-1)
in aux2 b b' (k-1)
in sort_vecs (aux b b' 1)
My issue is that it seems to find a basis of a sublattice. In particular, lll d [[-0.8526334764831849,-3.125000000000004e-2],[-1.2941941738241598,4.419417382415916e-2]] 0.75 returns [[0.41107277914220997,0.10669417382415924],[-1.2941941738241598,4.419417382415916e-2]], a basis for a index-2 sublattice, and with basis which are almost-parallel. I've been staring at this code for ages to no avail (I thought there was an issue with update where (i-1) should be (i) and (i) should be (i+1) but this caused an infinite loop). Any help is greatly appreciated.

Why can't I move a partial box definition into a local binding?

As a followup to this, I realized I need to use a heterogeneous composition to make a lid for a partial box. Here I have removed all the unnecessary cruft:
{-# OPTIONS --cubical #-}
module _ where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
postulate
A : Type
P : A → Type
PIsProp : ∀ x → isProp (P x)
prove : ∀ x → P x
x y : A
q : x ≡ y
a = prove x
b = prove y
prf : PathP (λ i → P (q i)) a b
prf = p
where
b′ : P y
b′ = subst P q a
r : PathP _ a b′
r = transport-filler (λ i → P (q i)) a
-- a b
-- ^ ^
-- | |
-- refl | | PIsProp y _ _
-- | |
--- a ---------> b′
-- r
p-faces : (i j : I) → Partial (i ∨ ~ i) (P (q i))
p-faces i j (i = i0) = a
p-faces i j (i = i1) = PIsProp y b′ b j
p : PathP (λ i → P (q i)) a b
p i = comp (λ j → P (q i)) ? (r i)
So here the only remaining hole is in the defintion of p. I'd like to fill it with p-faces i, of course, because that is the reason I defined it. However, this leads to a universe level error:
p : PathP (λ i → P (q i)) a b
p i = comp (λ j → P (q i)) (p-faces i) (r i)
Agda.Primitive.SSet ℓ-zero != Agda.Primitive.SSetω
when checking that the expression p-faces i has type
(i₁ : I) → Partial (i ∨ ~ i) (P (q i))
However, if I inline the definition of p-faces into p, it typechecks; note that this also includes typechecking the definition of p-faces (I don't need to remove it), it is only the usage of p-faces that causes this type error:
p : PathP (λ i → P (q i)) a b
p i = comp (λ j → P (q i)) (λ { j (i = i0) → a; j (i = i1) → PIsProp y b′ b j }) (r i)
What is the issue with using p-faces in the definition of p? To my untrained eyes, it looks like a normal definition never going above Type₀
I see you are using agda/master!
The following would have also worked
p i = comp (λ j → P (q i)) (\ j -> p-faces i j) (r i)
with the introduction of --two-level the types of comp and transp trigger a problem with sort assignment for universe polymorphism, so some eta expansion is needed here to let Agda check the lambda at the sort it wants.
Hopefully we'll find a better solution soon.

How to sort a list of full names by how common the ancestors are?

If every letter in the following represents a name. What is the best way to sort them by how common the ancestors are?
A B C D
E F G H
I J K L
M N C D
O P C D
Q R C D
S T G H
U V G H
W J K L
X J K L
The result should be:
I J K L # Three names is more important that two names
W J K L
X J K L
A B C D # C D is repeated more than G H
M N C D
O P C D
Q R C D
E F G H
S T G H
U V G H
EDIT:
Names might have spaces in them (Double names).
Consider the following example where each letter represents a single word:
A B C D M
E F G H M
I J K L M
M N C D M
O P C D
Q R C D
S T G H
U V G H
W J K L
X J K L
The output should be:
A B C D M
M N C D M
I J K L M
E F G H M
W J K L
X J K L
O P C D
Q R C D
S T G H
U V G H
First count the number of occurrences for each chain. Then rank each name according to that count. Try this:
from collections import defaultdict
words = """A B C D
E F G H
I J K L
M N C D
O P C D
Q R C D
S T G H
U V G H
W J K L
X J K L"""
words = words.split('\n')
# Count ancestors
counters = defaultdict(lambda: defaultdict(lambda: 0))
for word in words:
parts = word.split()
while parts:
counters[len(parts)][tuple(parts)] += 1
parts.pop(0)
# Calculate tuple of ranks, used for sorting
ranks = {}
for word in words:
rank = []
parts = word.split()
while parts:
rank.append(counters[len(parts)][tuple(parts)])
parts.pop(0)
ranks[word] = tuple(rank)
# Sort by ancestor count, longest chain comes first
words.sort(key=lambda word: ranks[word], reverse=True)
print(words)
Here's how you could do it in Java - essentially the same method as #fafl's solution:
static List<Name> sortNames(String[] input)
{
List<Name> names = new ArrayList<>();
for (String name : input)
names.add(new Name(name));
Map<String, Integer> partCount = new HashMap<>();
for (Name name : names)
for (String part : name.parts)
partCount.merge(part, 1, Integer::sum);
for (Name name : names)
for (String part : name.parts)
name.counts.add(partCount.get(part));
Collections.sort(names, new Comparator<Name>()
{
public int compare(Name n1, Name n2)
{
for (int c, i = 0; i < n1.parts.size(); i++)
if ((c = Integer.compare(n2.counts.get(i), n1.counts.get(i))) != 0)
return c;
return 0;
}
});
return names;
}
static class Name
{
List<String> parts = new ArrayList<>();
List<Integer> counts = new ArrayList<>();
Name(String name)
{
List<String> s = Arrays.asList(name.split("\\s+"));
for (int i = 0; i < s.size(); i++)
parts.add(String.join(" ", s.subList(i, s.size())));
}
}
Test:
public static void main(String[] args)
{
String[] input = {
"A B C D",
"W J K L",
"E F G H",
"I J K L",
"M N C D",
"O P C D",
"Q R C D",
"S T G H",
"U V G H",
"X J K L" };
for (Name name : sortNames(input))
System.out.println(name.parts.get(0));
}
Output:
I J K L
W J K L
X J K L
A B C D
M N C D
O P C D
Q R C D
E F G H
S T G H
U V G H

Ocaml Sort Program

I wrote these lines of code so as to sort the input of 5 numbers.
But when i compile and run it, then there is an error like - "int_of_string"
I do not know why this is not running. I am new to Ocaml.
let sort2 (a, b) = if a<b
then (a, b)
else (b, a)
let sort3 (a, b, c) =
let (a, b) = sort2(a, b) in
let (b, c) = sort2(b, c) in
let (a, b) = sort2(a, b) in
(a, b, c)
let sort5 (a, b, c, d, e) =
let (a, b, c) = sort3 (a, b, c) in
let (c, d, e) = sort3(c, d, e) in
let (a, b, c) = sort3 (a, b, c) in
(a, b, c, d, e)
let _ =
let a = read_int () in
let b = read_int () in
let c = read_int () in
let d = read_int () in
let e = read_int () in
let (a, b, c, d, e) = sort5 (a, b, c, d, e) in
print_int a; print_newline ();
print_int b; print_newline ();
print_int c; print_newline ();
print_int d; print_newline ();
print_int e; print_newline ()
Exception: Failure "int_of_string".
The exception happens when you type a line of input that cannot be parsed as an integer, such as an empty line. This must be what happened during your tests.
Error handling
If you want a little bit of robustness, you have to take into account that the input can be malformed. You can catch the runtime error to handle unexpected inputs:
# let maybe_read_int () = try Some (read_int ()) with Failure _ -> None;;
val maybe_read_int : unit -> int option = <fun>
The value returned from the above function is an int option.
Failure
# maybe_read_int ();;
foo
- : int option = None
Success
# maybe_read_int ();;
42
- : int option = Some 42
Reading multiple integers
You can't just use the above function like in your example because some of your variables would be bound to None (in that case, this is no better that letting the exception bubble up). Instead, you may want to read as many lines as necessary until you get 5 integers:
let rec read_n_ints n =
if (n > 0) then
match (maybe_read_int ()) with
| None -> read_n_ints n
| Some v -> v :: (read_n_ints (n - 1))
else [];;
# read_n_ints 3;;
0
foo
bar
1
2
- : int list = [0; 1; 2]
Now that you have a list of integers, you can bind them to variables using pattern matching. Note that we have to be exhaustive and consider cases that should not happen:
# match (read_n_ints 5) with
| [ a; b; c; d; e] -> (a + b + c + d + e)
| _ -> raise (Failure "Failed to read 5 integers");;
3
foo
2
10
30
ii
r
90
3
- : int = 136

How do I find a factorial? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
How can I write a program to find the factorial of any natural number?
This will work for the factorial (although a very small subset) of positive integers:
unsigned long factorial(unsigned long f)
{
if ( f == 0 )
return 1;
return(f * factorial(f - 1));
}
printf("%i", factorial(5));
Due to the nature of your problem (and level that you have admitted), this solution is based more in the concept of solving this rather than a function that will be used in the next "Permutation Engine".
This calculates factorials of non-negative integers[*] up to ULONG_MAX, which will have so many digits that it's unlikely your machine can store a whole lot more, even if it has time to calculate them. Uses the GNU multiple precision library, which you need to link against.
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>
void factorial(mpz_t result, unsigned long input) {
mpz_set_ui(result, 1);
while (input > 1) {
mpz_mul_ui(result, result, input--);
}
}
int main() {
mpz_t fact;
unsigned long input = 0;
char *buf;
mpz_init(fact);
scanf("%lu", &input);
factorial(fact, input);
buf = malloc(mpz_sizeinbase(fact, 10) + 1);
assert(buf);
mpz_get_str(buf, 10, fact);
printf("%s\n", buf);
free(buf);
mpz_clear(fact);
}
Example output:
$ make factorial CFLAGS="-L/bin/ -lcyggmp-3 -pedantic" -B && ./factorial
cc -L/bin/ -lcyggmp-3 -pedantic factorial.c -o factorial
100
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
[*] If you mean something else by "number" then you'll have to be more specific. I'm not aware of any other numbers for which the factorial is defined, despite valiant efforts by Pascal to extend the domain by use of the Gamma function.
Why do it in C when you can do it in Haskell:
Freshman Haskell programmer
fac n = if n == 0
then 1
else n * fac (n-1)
Sophomore Haskell programmer, at MIT (studied Scheme as a freshman)
fac = (\(n) ->
(if ((==) n 0)
then 1
else ((*) n (fac ((-) n 1)))))
Junior Haskell programmer (beginning Peano player)
fac 0 = 1
fac (n+1) = (n+1) * fac n
Another junior Haskell programmer (read that n+k patterns are “a
disgusting part of Haskell” 1 and joined the “Ban n+k
patterns”-movement [2])
fac 0 = 1
fac n = n * fac (n-1)
Senior Haskell programmer (voted for Nixon Buchanan Bush —
“leans right”)
fac n = foldr (*) 1 [1..n]
Another senior Haskell programmer (voted for McGovern Biafra
Nader — “leans left”)
fac n = foldl (*) 1 [1..n]
Yet another senior Haskell programmer (leaned so far right he came
back left again!)
-- using foldr to simulate foldl
fac n = foldr (\x g n -> g (x*n)) id [1..n] 1
Memoizing Haskell programmer (takes Ginkgo Biloba daily)
facs = scanl (*) 1 [1..]
fac n = facs !! n
Pointless (ahem) “Points-free” Haskell programmer (studied at
Oxford)
fac = foldr (*) 1 . enumFromTo 1
Iterative Haskell programmer (former Pascal programmer)
fac n = result (for init next done)
where init = (0,1)
next (i,m) = (i+1, m * (i+1))
done (i,_) = i==n
result (_,m) = m
for i n d = until d n i
Iterative one-liner Haskell programmer (former APL and C programmer)
fac n = snd (until ((>n) . fst) (\(i,m) -> (i+1, i*m)) (1,1))
Accumulating Haskell programmer (building up to a quick climax)
facAcc a 0 = a
facAcc a n = facAcc (n*a) (n-1)
fac = facAcc 1
Continuation-passing Haskell programmer (raised RABBITS in early
years, then moved to New Jersey)
facCps k 0 = k 1
facCps k n = facCps (k . (n *)) (n-1)
fac = facCps id
Boy Scout Haskell programmer (likes tying knots; always “reverent,”
he belongs to the Church of the Least Fixed-Point [8])
y f = f (y f)
fac = y (\f n -> if (n==0) then 1 else n * f (n-1))
Combinatory Haskell programmer (eschews variables, if not
obfuscation; all this currying’s just a phase, though it seldom
hinders)
s f g x = f x (g x)
k x y = x
b f g x = f (g x)
c f g x = f x g
y f = f (y f)
cond p f g x = if p x then f x else g x
fac = y (b (cond ((==) 0) (k 1)) (b (s (*)) (c b pred)))
List-encoding Haskell programmer (prefers to count in unary)
arb = () -- "undefined" is also a good RHS, as is "arb" :)
listenc n = replicate n arb
listprj f = length . f . listenc
listprod xs ys = [ i (x,y) | x<-xs, y<-ys ]
where i _ = arb
facl [] = listenc 1
facl n#(_:pred) = listprod n (facl pred)
fac = listprj facl
Interpretive Haskell programmer (never “met a language” he didn't
like)
-- a dynamically-typed term language
data Term = Occ Var
| Use Prim
| Lit Integer
| App Term Term
| Abs Var Term
| Rec Var Term
type Var = String
type Prim = String
-- a domain of values, including functions
data Value = Num Integer
| Bool Bool
| Fun (Value -> Value)
instance Show Value where
show (Num n) = show n
show (Bool b) = show b
show (Fun _) = ""
prjFun (Fun f) = f
prjFun _ = error "bad function value"
prjNum (Num n) = n
prjNum _ = error "bad numeric value"
prjBool (Bool b) = b
prjBool _ = error "bad boolean value"
binOp inj f = Fun (\i -> (Fun (\j -> inj (f (prjNum i) (prjNum j)))))
-- environments mapping variables to values
type Env = [(Var, Value)]
getval x env = case lookup x env of
Just v -> v
Nothing -> error ("no value for " ++ x)
-- an environment-based evaluation function
eval env (Occ x) = getval x env
eval env (Use c) = getval c prims
eval env (Lit k) = Num k
eval env (App m n) = prjFun (eval env m) (eval env n)
eval env (Abs x m) = Fun (\v -> eval ((x,v) : env) m)
eval env (Rec x m) = f where f = eval ((x,f) : env) m
-- a (fixed) "environment" of language primitives
times = binOp Num (*)
minus = binOp Num (-)
equal = binOp Bool (==)
cond = Fun (\b -> Fun (\x -> Fun (\y -> if (prjBool b) then x else y)))
prims = [ ("*", times), ("-", minus), ("==", equal), ("if", cond) ]
-- a term representing factorial and a "wrapper" for evaluation
facTerm = Rec "f" (Abs "n"
(App (App (App (Use "if")
(App (App (Use "==") (Occ "n")) (Lit 0))) (Lit 1))
(App (App (Use "*") (Occ "n"))
(App (Occ "f")
(App (App (Use "-") (Occ "n")) (Lit 1))))))
fac n = prjNum (eval [] (App facTerm (Lit n)))
Static Haskell programmer (he does it with class, he’s got that
fundep Jones! After Thomas Hallgren’s “Fun with Functional
Dependencies” [7])
-- static Peano constructors and numerals
data Zero
data Succ n
type One = Succ Zero
type Two = Succ One
type Three = Succ Two
type Four = Succ Three
-- dynamic representatives for static Peanos
zero = undefined :: Zero
one = undefined :: One
two = undefined :: Two
three = undefined :: Three
four = undefined :: Four
-- addition, a la Prolog
class Add a b c | a b -> c where
add :: a -> b -> c
instance Add Zero b b
instance Add a b c => Add (Succ a) b (Succ c)
-- multiplication, a la Prolog
class Mul a b c | a b -> c where
mul :: a -> b -> c
instance Mul Zero b Zero
instance (Mul a b c, Add b c d) => Mul (Succ a) b d
-- factorial, a la Prolog
class Fac a b | a -> b where
fac :: a -> b
instance Fac Zero One
instance (Fac n k, Mul (Succ n) k m) => Fac (Succ n) m
-- try, for "instance" (sorry):
--
-- :t fac four
Beginning graduate Haskell programmer (graduate education tends to
liberate one from petty concerns about, e.g., the efficiency of
hardware-based integers)
-- the natural numbers, a la Peano
data Nat = Zero | Succ Nat
-- iteration and some applications
iter z s Zero = z
iter z s (Succ n) = s (iter z s n)
plus n = iter n Succ
mult n = iter Zero (plus n)
-- primitive recursion
primrec z s Zero = z
primrec z s (Succ n) = s n (primrec z s n)
-- two versions of factorial
fac = snd . iter (one, one) (\(a,b) -> (Succ a, mult a b))
fac' = primrec one (mult . Succ)
-- for convenience and testing (try e.g. "fac five")
int = iter 0 (1+)
instance Show Nat where
show = show . int
(zero : one : two : three : four : five : _) = iterate Succ Zero
Origamist Haskell programmer
(always starts out with the “basic Bird fold”)
-- (curried, list) fold and an application
fold c n [] = n
fold c n (x:xs) = c x (fold c n xs)
prod = fold (*) 1
-- (curried, boolean-based, list) unfold and an application
unfold p f g x =
if p x
then []
else f x : unfold p f g (g x)
downfrom = unfold (==0) id pred
-- hylomorphisms, as-is or "unfolded" (ouch! sorry ...)
refold c n p f g = fold c n . unfold p f g
refold' c n p f g x =
if p x
then n
else c (f x) (refold' c n p f g (g x))
-- several versions of factorial, all (extensionally) equivalent
fac = prod . downfrom
fac' = refold (*) 1 (==0) id pred
fac'' = refold' (*) 1 (==0) id pred
Cartesianally-inclined Haskell programmer (prefers Greek food,
avoids the spicy Indian stuff; inspired by Lex Augusteijn’s “Sorting
Morphisms” [3])
-- (product-based, list) catamorphisms and an application
cata (n,c) [] = n
cata (n,c) (x:xs) = c (x, cata (n,c) xs)
mult = uncurry (*)
prod = cata (1, mult)
-- (co-product-based, list) anamorphisms and an application
ana f = either (const []) (cons . pair (id, ana f)) . f
cons = uncurry (:)
downfrom = ana uncount
uncount 0 = Left ()
uncount n = Right (n, n-1)
-- two variations on list hylomorphisms
hylo f g = cata g . ana f
hylo' f (n,c) = either (const n) (c . pair (id, hylo' f (c,n))) . f
pair (f,g) (x,y) = (f x, g y)
-- several versions of factorial, all (extensionally) equivalent
fac = prod . downfrom
fac' = hylo uncount (1, mult)
fac'' = hylo' uncount (1, mult)
Ph.D. Haskell programmer (ate so many bananas that his eyes bugged
out, now he needs new lenses!)
-- explicit type recursion based on functors
newtype Mu f = Mu (f (Mu f)) deriving Show
in x = Mu x
out (Mu x) = x
-- cata- and ana-morphisms, now for *arbitrary* (regular) base functors
cata phi = phi . fmap (cata phi) . out
ana psi = in . fmap (ana psi) . psi
-- base functor and data type for natural numbers,
-- using a curried elimination operator
data N b = Zero | Succ b deriving Show
instance Functor N where
fmap f = nelim Zero (Succ . f)
nelim z s Zero = z
nelim z s (Succ n) = s n
type Nat = Mu N
-- conversion to internal numbers, conveniences and applications
int = cata (nelim 0 (1+))
instance Show Nat where
show = show . int
zero = in Zero
suck = in . Succ -- pardon my "French" (Prelude conflict)
plus n = cata (nelim n suck )
mult n = cata (nelim zero (plus n))
-- base functor and data type for lists
data L a b = Nil | Cons a b deriving Show
instance Functor (L a) where
fmap f = lelim Nil (\a b -> Cons a (f b))
lelim n c Nil = n
lelim n c (Cons a b) = c a b
type List a = Mu (L a)
-- conversion to internal lists, conveniences and applications
list = cata (lelim [] (:))
instance Show a => Show (List a) where
show = show . list
prod = cata (lelim (suck zero) mult)
upto = ana (nelim Nil (diag (Cons . suck)) . out)
diag f x = f x x
fac = prod . upto
Post-doc Haskell programmer
(from Uustalu, Vene and Pardo’s “Recursion Schemes from Comonads” [4])
-- explicit type recursion with functors and catamorphisms
newtype Mu f = In (f (Mu f))
unIn (In x) = x
cata phi = phi . fmap (cata phi) . unIn
-- base functor and data type for natural numbers,
-- using locally-defined "eliminators"
data N c = Z | S c
instance Functor N where
fmap g Z = Z
fmap g (S x) = S (g x)
type Nat = Mu N
zero = In Z
suck n = In (S n)
add m = cata phi where
phi Z = m
phi (S f) = suck f
mult m = cata phi where
phi Z = zero
phi (S f) = add m f
-- explicit products and their functorial action
data Prod e c = Pair c e
outl (Pair x y) = x
outr (Pair x y) = y
fork f g x = Pair (f x) (g x)
instance Functor (Prod e) where
fmap g = fork (g . outl) outr
-- comonads, the categorical "opposite" of monads
class Functor n => Comonad n where
extr :: n a -> a
dupl :: n a -> n (n a)
instance Comonad (Prod e) where
extr = outl
dupl = fork id outr
-- generalized catamorphisms, zygomorphisms and paramorphisms
gcata :: (Functor f, Comonad n) =>
(forall a. f (n a) -> n (f a))
-> (f (n c) -> c) -> Mu f -> c
gcata dist phi = extr . cata (fmap phi . dist . fmap dupl)
zygo chi = gcata (fork (fmap outl) (chi . fmap outr))
para :: Functor f => (f (Prod (Mu f) c) -> c) -> Mu f -> c
para = zygo In
-- factorial, the *hard* way!
fac = para phi where
phi Z = suck zero
phi (S (Pair f n)) = mult f (suck n)
-- for convenience and testing
int = cata phi where
phi Z = 0
phi (S f) = 1 + f
instance Show (Mu N) where
show = show . int
Tenured professor (teaching Haskell to freshmen)
fac n = product [1..n]
Content from The Evolution of a Haskell Programmer by Fritz Ruehr, Willamette University - 11 July 01
Thanks to Christoph, a C99 solution that works for quite a few "numbers":
#include <math.h>
#include <stdio.h>
double fact(double x)
{
return tgamma(x+1.);
}
int main()
{
printf("%f %f\n", fact(3.0), fact(5.0));
return 0;
}
produces 6.000000 120.000000
For large n you may run into some issues and you may want to use Stirling's approximation:
Which is:
If your main objective is an interesting looking function:
int facorial(int a) {
int b = 1, c, d, e;
a--;
for (c = a; c > 0; c--)
for (d = b; d > 0; d--)
for (e = c; e > 0; e--)
b++;
return b;
}
(Not recommended as an algorithm for real use.)
a tail-recursive version:
long factorial(long n)
{
return tr_fact(n, 1);
}
static long tr_fact(long n, long result)
{
if(n==1)
return result;
else
return tr_fact(n-1, n*result);
}
In C99 (or Java) I would write the factorial function iteratively like this:
int factorial(int n)
{
int result = 1;
for (int i = 2; i <= n; i++)
{
result *= i;
}
return result;
}
C is not a functional language and you can't rely on tail-call optimization. So don't use recursion in C (or Java) unless you need to.
Just because factorial is often used as the first example for recursion it doesn't mean you need recursion to compute it.
This will overflow silently if n is too big, as is the custom in C (and Java).
If the numbers int can represent are too small for the factorials you want to compute then choose another number type. long long if it needs be just a little bit bigger, float or double if n isn't too big and you don't mind some imprecision, or big integers if you want the exact values of really big factorials.
Here's a C program that uses OPENSSL's BIGNUM implementation, and therefore is not particularly useful for students. (Of course accepting a BIGNUM as the input parameter is crazy, but helpful for demonstrating interaction between BIGNUMs).
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <openssl/crypto.h>
#include <openssl/bn.h>
BIGNUM *factorial(const BIGNUM *num)
{
BIGNUM *count = BN_new();
BIGNUM *fact = NULL;
BN_CTX *ctx = NULL;
BN_one(count);
if( BN_cmp(num, BN_value_one()) <= 0 )
{
return count;
}
ctx = BN_CTX_new();
fact = BN_dup(num);
BN_sub(count, fact, BN_value_one());
while( BN_cmp(count, BN_value_one()) > 0 )
{
BN_mul(fact, count, fact, ctx);
BN_sub(count, count, BN_value_one());
}
BN_CTX_free(ctx);
BN_free(count);
return fact;
}
This test program shows how to create a number for input and what to do with the return value:
int main(int argc, char *argv[])
{
const char *test_cases[] =
{
"0", "1",
"1", "1",
"4", "24",
"15", "1307674368000",
"30", "265252859812191058636308480000000",
"56", "710998587804863451854045647463724949736497978881168458687447040000000000000",
NULL, NULL
};
int index = 0;
BIGNUM *bn = NULL;
BIGNUM *fact = NULL;
char *result_str = NULL;
for( index = 0; test_cases[index] != NULL; index += 2 )
{
BN_dec2bn(&bn, test_cases[index]);
fact = factorial(bn);
result_str = BN_bn2dec(fact);
printf("%3s: %s\n", test_cases[index], result_str);
assert(strcmp(result_str, test_cases[index + 1]) == 0);
OPENSSL_free(result_str);
BN_free(fact);
BN_free(bn);
bn = NULL;
}
return 0;
}
Compiled with gcc:
gcc factorial.c -o factorial -g -lcrypto
int factorial(int n){
return n <= 1 ? 1 : n * factorial(n-1);
}
You use the following code to do it.
#include <stdio.h>
#include <stdlib.h>
int main()
{
int x, number, fac;
fac = 1;
printf("Enter a number:\n");
scanf("%d",&number);
if(number<0)
{
printf("Factorial not defined for negative numbers.\n");
exit(0);
}
for(x = 1; x <= number; x++)
{
if (number >= 0)
fac = fac * x;
else
fac=1;
}
printf("%d! = %d\n", number, fac);
}
For large numbers you probably can get away with an approximate solution, which tgamma gives you (n! = Gamma(n+1)) from math.h. If you want even larger numbers, they won't fit in a double, so you should use lgamma (natural log of the gamma function) instead.
If you're working somewhere without a full C99 math.h, you can easily do this type of thing yourself:
double logfactorial(int n) {
double fac = 0.0;
for ( ; n>1 ; n--) fac += log(fac);
return fac;
}
I don't think I'd use this in most cases, but one well-known practice which is becoming less widely used is to have a look-up table. If we're only working with built-in types, the memory hit is tiny.
Just another approach, to make the poster aware of a different technique. Many recursive solutions also can be memoized whereby a lookup table is filled in when the algorithm runs, drastically reducing the cost on future calls (kind of like the principle behind .NET JIT compilation I guess).
We have to start from 1 to the limit specfied say n.Start from 1*2*3...*n.
In c, i am writing it as a function.
main()
{
int n;
scanf("%d",&n);
printf("%ld",fact(n));
}
long int fact(int n)
{
long int facto=1;
int i;
for(i=1;i<=n;i++)
{
facto=facto*i;
}
return facto;
}
Simple solution:
unsigned int factorial(unsigned int n)
{
return (n == 1 || n == 0) ? 1 : factorial(n - 1) * n;
}
Simplest and most efficient is to sum up logarithms. If you use Log10 you get power and exponent.
Pseudocode
r=0
for i from 1 to n
r= r + log(i)/log(10)
print "result is:", 10^(r-floor(r)) ,"*10^" , floor(r)
You might need to add the code so the integer part does not increase too much and thus decrease accuracy, but result should be ok for even very large factorials.
Example in C using recursion
unsigned long factorial(unsigned long f)
{
if (f) return(f * factorial(f - 1));
return 1;
}
printf("%lu", factorial(5));
I used this code for Factorial:
#include<stdio.h>
int main(){
int i=1,f=1,n;
printf("\n\nEnter a number: ");
scanf("%d",&n);
while(i<=n){
f=f*i;
i++;
}
printf("Factorial of is: %d",f);
getch();
}
I would do this with a pre-calculated lookup table as suggested by Mr. Boy. This would be faster to calculate than an iterative or recursive solution. It relies on how fast n! grows, because the largest n! you can calculate without overflowing an unsigned long long (max value of 18,446,744,073,709,551,615) is only 20!, so you only need an array with 21 elements. Here's how it would look in c:
long long factorial (int n) {
long long f[22] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000};
return f[n];
}
See for yourself!

Resources