How to Plotting an Linear Inequality Without Using Matplotlib in Python? - for-loop

I'm using the for-loop to printing out the heart pattern by implementing this linear inequality using '*' in Python. But, the output doesn't seem right. I'm actually very confused about how to plotting the equation in Python, mainly about the range of x and y.
for x in range (-30,30) :
for y in range (-15,15) :
if (x//2)**2 +(5*y//4 - 2*((abs(x))**0.5))**2 <= 120 :
print('*', end='')
print()

Related

Computing a single element of the adjugate or inverse of a symbolic binary matrix

I'm trying to get a single element of an adjugate A_adj of a matrix A, both of which need to be symbolic expressions, where the symbols x_i are binary and the matrix A is symmetric and sparse. Python's sympy works great for small problems:
from sympy import zeros, symbols
size = 4
A = zeros(size,size)
x_i = [x for x in symbols(f'x0:{size}')]
for i in range(size-1):
A[i,i] += 0.5*x_i[i]
A[i+1,i+1] += 0.5*x_i[i]
A[i,i+1] = A[i+1,i] = -0.3*(i+1)*x_i[i]
A_adj_0 = A[1:,1:].det()
A_adj_0
This calculates the first element A_adj_0 of the cofactor matrix (which is the corresponding minor) and correctly gives me 0.125x_0x_1x_2 - 0.28x_2x_2^2 - 0.055x_1^2x_2 - 0.28x_1x_2^2, which is the expression I need, but there are two issues:
This is completely unfeasible for larger matrices (I need this for sizes of ~100).
The x_i are binary variables (i.e. either 0 or 1) and there seems to be no way for sympy to simplify expressions of binary variables, i.e. simplifying polynomials x_i^n = x_i.
The first issue can be partly addressed by instead solving a linear equation system Ay = b, where b is set to the first basis vector [1, 0, 0, 0], such that y is the first column of the inverse of A. The first entry of y is the first element of the inverse of A:
b = zeros(size,1)
b[0] = 1
y = A.LUsolve(b)
s = {x_i[i]: 1 for i in range(size)}
print(y[0].subs(s) * A.subs(s).det())
print(A_adj_0.subs(s))
The problem here is that the expression for the first element of y is extremely complicated, even after using simplify() and so on. It would be a very simple expression with simplification of binary expressions as mentioned in point 2 above. It's a faster method, but still unfeasible for larger matrices.
This boils down to my actual question:
Is there an efficient way to compute a single element of the adjugate of a sparse and symmetric symbolic matrix, where the symbols are binary values?
I'm open to using other software as well.
Addendum 1:
It seems simplifying binary expressions in sympy is possible with a simple custom substitution which I wasn't aware of:
A_subs = A_adj_0
for i in range(size):
A_subs = A_subs.subs(x_i[i]*x_i[i], x_i[i])
A_subs
You should make sure to use Rational rather than floats in sympy so S(1)/2 or Rational(1, 2) rather than 0.5.
There is a new (undocumented and for the moment internal) implementation of matrices in sympy called DomainMatrix. It is likely to be a lot faster for a problem like this and always produces polynomial results in a fully expanded form. I expect that it will be much faster for this kind of problem but it still seems to be fairly slow for this because is is not sparse internally (yet - that will probably change in the next release) and it does not take advantage of the simplification from the symbols being binary-valued. It can be made to work over GF(2) but not with symbols that are assumed to be in GF(2) which is something different.
In case it is helpful though this is how you would use it in sympy 1.7.1:
from sympy import zeros, symbols, Rational
from sympy.polys.domainmatrix import DomainMatrix
size = 10
A = zeros(size,size)
x_i = [x for x in symbols(f'x0:{size}')]
for i in range(size-1):
A[i,i] += Rational(1, 2)*x_i[i]
A[i+1,i+1] += Rational(1, 2)*x_i[i]
A[i,i+1] = A[i+1,i] = -Rational(3, 10)*(i+1)*x_i[i]
# Convert to DomainMatrix:
dM = DomainMatrix.from_list_sympy(size-1, size-1, A[1:, 1:].tolist())
# Compute determinant and convert back to normal sympy expression:
# Could also use dM.det().as_expr() although it might be slower
A_adj_0 = dM.charpoly()[-1].as_expr()
# Reduce powers:
A_adj_0 = A_adj_0.replace(lambda e: e.is_Pow, lambda e: e.args[0])
print(A_adj_0)

how to define the probability distribution

I have small question and I will be very happy if you can give me a solution or any idea for solution of probability distribution of the following idea:
I have a random variable x which follows exponntial distribution with parameter lambda1,I have one more variable y which follows exponential distribution with parameter lambda2. z is a discrete value, how can I define the probability distribution of k in the following formula ?
k=z-x-y
Thank you so much
Ok, lets start with rewriting formula a bit:
k = z-x-y = -(x-y) + z = - (x + y + -z)
That parts in the parentheses looks manageable. Let's start with x+y. For random variable x and y if one wants to find out their sum, answer is PDFs convolution.
q = x+y
PDF(q) = S PDFx(q-t) PDFy(t) dt
where S denotes integration. For x and y being exponential, the convolution integral is known and equal to expression here when lambdas are different, or to Gamma(2,lambda) when lambdas are equal, Gamma being Gamma distribution.
If z is some constant discrete value, then we could express it as continuous RV with PDF
PDF(t) = 𝛿(t+z)
where 𝛿 is Delta function, and we take into account that peak would be at -z as expected. It is normalized, so integral over t is eqaul to 1. It could be easily extended to discrete RV, as sum of 𝛿-functions at those values, multiplied by probabilities such that sum of them is equal to 1.
Again, we have sum of two RV, with known PDFs, and solution is convolution, which is easy to compute due to property of 𝛿-function. So final PDF of x + y + -z would be
PDF(q+z) dq
where PDF is taken from sum expression from Exponential distribution wiki, of Gamma distribution from Gamma wiki.
You just have to negate, and that's it

Solving a Nonlinear equation with Julia

I am trying to solve a nonlinear equation with Julia,
I have the following nonlinear equation
Nfoc(k,k1,z,n)=(1-α)*exp(z)*(k/n)^α/(exp(z)*(k^α)*(n^(1-α))+k*(1-δ)-k1) - A/(1-n)
and I have a grid of values for k,k1 and z and I am trying to find the values of x that are the roots of this equation for each k,k1, and z, by using this loop:
MatrixN=zeros(nkk,M,nkk)
for i=1:nkk,j=1:M
for i2=1:nkk
MatrixN[i,j,i2]=roots(Nfoc[K[i],K[i2],z(j),n])
end
end
However, its obvious that the command roots its not functioning.
I would deeply appreciate any help in the less techical way possible!
I don't have enough knowledge to work on your use case, but in general, one way to find roots of a parametric function could be:
using FastAnonymous # Creating efficient "anonymous functions" in Julia
using Roots
f(x,k,k1,z,n) = exp(x) - x^4 + k + k1 + z + n
function f_gen(k,k1,z,n)
#anon x -> f(x,k,k1,z,n)
end
fzero(f_gen(0,0,0,0), 1) # => finds x so f(x,0,0,0,0) = 0 using a derivative free method

How to reduce for-loops in this code?

I am doing calculations that involves too many for-loops. I would appreciate any idea that could eliminates some of the loops to make the algorithm more efficient. Here is the mathematical expression I want to get: A discrete distribution of random variable Y.
Pr(Y=y )=
∑_Pr(Z=z) ∙∑_Pr((X=x) ∑_Pr(W=w) ∙∑_Pr(R=r│W=w) ∙Pr(S=z+y-x-r|W=w)
Y,Z,X,W,R,S are discrete random variable, they are dependent. I know the expression for each term, but there are just probability calculations – not close-form distributions.
array Y[max_Y+1]; % store the distribution of Y
temp1=0, temp2=0, temp3=0, temp4=0; % summation for partial distributions
for y = 0 max_Y
temp1=0;
for z = 0 : 5- y
temp2=0;
for x=0:5
temp3=0;
for w=0:5
temp4=0
for r=0:w
temp4=temp4+Pr(R=r│W=w)∙Pr(S=z+y-x-r|W=w);
end
temp3=temp3+temp4*Pr(W=w);
end
temp2= temp2+temp3*Pr(X=x);
end
temp1=temp1+temp2* P(Z=z);
end
Y[y]=temp1;
end
Thanks a lot!
Ester
From what I notice in every iteration only the term Pr(S=z+y-x-r|W=w) & Pr(Z=z) is dependent on your function input variable Y so all other value can be precomputed using separate for-loops and then just compute Pr(S=z+y-x-r|W=w)*Pr(Z=z)*precomputed

Get equidistant intervals on approximated bark scale

Wikipedia says we can approximate Bark scale with the equation:
b(f) = 13*atan(0.00076*f)+3.5*atan(power(f/7500,2))
How can I divide frequency spectrum into n intervals of the same length on Bark scale (interval division points will be equidistant on Bark scale)?
The best way would be to analytically inverse function (express x by function of y). I was trying doing it on paper but failed. WolframAlpha search bar couldn't do it also. I tried Octave finverse function, but I got error.
Octave says (for simpler example):
octave:2> x = sym('x');
octave:3> finverse(2*x)
error: `finverse' undefined near line 3 column 1
This is finverse description from Matlab: http://www.mathworks.com/help/symbolic/finverse.html
There could be also numerical way to do it. I can imagine that you just start from dividing the y axis equally and search for ideal division by binary search. But maybe there are some existing tools that do it?
You need to numerically solve this equation (there is no analytical inverse function). Set values for b equally spaced and solve the equation to find the various f. Bissection is somewhat slow but a very good alternative is Brent's method. See http://en.wikipedia.org/wiki/Brent%27s_method
This function can't be inverted analytically. You'll have to use some numerical procedure. Binary search would be fine, but there are more efficient ways to do these sorts of things: look into root-finding algorithms. You can apply your algorithm of choice to the equation b(f) = f_n for each of the frequency interval endpoints f_n.
Just so you know, in (say) octave to implement rpsmi's or David Zaslavsky's answer, you'd do something like this:
global x0 = 0.
function res = b(f)
global x0
res = 13*atan(0.00076*f)+3.5*atan(power(f/7500,2)) - x0
end
function [intervals, barks] = barkintervals(left, right, n)
global x0
intervals = linspace(left, right, n);
barks = intervals;
for i = 1:n
x0 = intervals(i);
# 125*x0 is just a crude guess starting point given the values
[barks(i), fval, info] = fsolve('b', 125*x0);
endfor
end
and run it like so:
octave:1> barks
octave:2> [i,bx] = barkintervals(0, 10, 10)
[... lots of output from fsolve deleted...]
i =
Columns 1 through 8:
0.00000 1.11111 2.22222 3.33333 4.44444 5.55556 6.66667 7.77778
Columns 9 and 10:
8.88889 10.00000
bx =
Columns 1 through 6:
0.0000e+00 1.1266e+02 2.2681e+02 3.4418e+02 4.6668e+02 5.9653e+02
Columns 7 through 10:
7.3639e+02 8.8960e+02 1.0605e+03 1.2549e+03
I finally decided not to use the Bark values approximation but ideal values for critical bands centres (defined for n=1..24). I plotted them with gnuplot and on the same graph I plotted arbitrarily chosen values for points of greater density (for the required n>24). I adjusted the points values in Hz till the the both curves were approximately the same.
Of course rpsmi and David Zaslavsky answers are more general and scalable.

Resources