search for suitable algorithms for the space minimization problem - algorithm

advise me a solution idea and algorithms can help me solve this problem:
there is a field on which there is a main element (red color) and additional elements (other colors), which must be connected by at least one cell of the connecting element (gray color) to the main element. goal: minimize space usage and additionally adapt to the given field framework
most likely, the connection will need to be searched through variations of the BFS, packing most likely needs to be solved as a variation of the knapsack problems, but I did not find a suitable algorithm and I do not have a general idea of the global solution

Related

Divide an image by grouping similar pixels into rectangles

consider an image like this:
by grouping pixels by color into distinct rectangles, different configurations might be achieved, for example:
the goal is to find one of the best configurations, i.e. a configuration which has the least possible number of rectangles (rectangles sizes are not important).
any idea on how to design an efficient algorithm which is able to solve this problem?
EDIT:
i think the best answer is the one by #dshin, as they proved that this problem is a NP-HARD one so there probably isn't any efficient solution that is able to guarantee an optimal result.
other answers provide reasonable compromises to get an acceptable solution, but that won't always be the optimal one.
Each connected colored region is a rectilinear polygon that can be considered independently, and so your problem amounts to solving the minimum rectangle covering for rectilinear polygons. This is a well-studied problem that finds applications in some fields, like VLSI.
For convex rectilinear polygons, there is an algorithm that finds the optimal solution in polynomial time, described in this 1984 thesis.
The non-convex case is NP-hard (reference), so an efficient optimal solution likely does not exist. But there are several algorithms which produce good empirical results. This 1990 publication describes three separate algorithms, each of which are guaranteed to use at most twice as many rectangles as the optimal solution. This 2016 publication describes an algorithm that uses the common IP + LP relaxation technique, which apparently produces better results in real-life problem instances, although lacking in theoretical guarantees. Unfortunately, both publications are behind paywalls, and I haven't been able to find free resources that describe the algorithms.
If you are just looking for something reasonable, and your problem instances are not pathological in nature, then the algorithms described in other answers are probably good enough.
I don't have a proof but my feeling is a greedy approach should solve this problem:
Start on the upper left (or in whichever corner)
Expand rectangle 1px to the right as long as colors match
Expand rectangle 1px to the bottom as long as all colors in that row match
Line by line and column by column, find the next pixel that is not already part of a square (maybe keep track of visited pixels in a second array) and repeat 2 and 3.
You can switch lines and columns and go up and left or whatever instead and end up with different configurations, but from playing this through in my mind I think the number of rectangles should always be the same.
The idea here is based on the following links: Link 1 and Link 2.
In both the cases, the largest possible rectangle is computed within a given polygon/shape. Check both the above links for details.
We can extend the idea above to the problem at hand.
Steps:
Filter the image by color (say red)
Find the largest possible rectangle in the red region. After doing so mask it.
Repeat to find the next biggest rectangle until all the portions in red have been covered.
Repeat the above for every unique color.
Overview:

What are the applications of Widest path problem?

I want to know some more applications of the widest path problem. CLICK!
It seems like something that can be used in a multitude of places, but I couldn't get anything constructive from searching on the internet.
Can someone please share as to where else this might be used?
thanks in advance.
(what I searched for included uses in p2p networks and CDN, but I couldn't find exactly how it is used / the papers were too long for me to scout.)
The widest path problem has a variety of applications in areas such as network routing problems, digital compositing and voting theory. Some specific applications include:
Finding the route with maximum transmission speed between two nodes.
This comes almost directly from the widest-path problem definition. We want to find the path between two nodes which maximizes the minimum-weight edge in the path.
Computing the strongest path strengths in Schulze’s method.
Schulze's method is a system in voting theory for finding a single winner among multiple candidates. Each voter provides an ordered preference list. We then construct a weighted graph where vertices represents candidates and the weight of an edge (u, v) represents the number of voters who prefer candidate u over candidate v. Next, we want to find the strength of the strongest path between each pair of candidates. This is the part of Schulze's method that can be solved using the widest-path problem. We simply run an algorithm to solve the widest-path problem for each pair of vertices.
Mosaicking of digital photographic maps. This is a technique for merging two maps into a single bigger map. The challenge is the the two original photos might have different light intensity, colors, etc. One way to do mosaicking is to produce seams where each pixel in the resulting picture is represented entirely by one photo or the other. We want the seam to appear invisible in the final product. The problem of finding the optimal seam can be modeled as a widest-path problem. Details for the modeling are found in the original paper
Metabolic path analysis for living organisms. The objective of this type of analysis is identify critical reactions in living organisms. A network is constructed based on the stoichiometry of the reactions. We wish to find the path which is energetically favored in the production of a particular metabolite, ie the path where the bottleneck between two vertices is the smallest. This corresponds to the widest-path problem.

Find start and end position of "cover-all" path then connect them

I have the shape in my 2dArray like this (for example):
It is known that the points A and B (I do not know where) and a path that covers the entire shape (must walk through each cell) must exist. Can you give me some help on how to determine points A and B and then the "cover-all" path? Maybe there are some known algorithms for such case. Or some help with a pseudo-code algorithm. Thanks in advance.
Check nhahdth's link to see that your problem in general is np-hard. this mathoverflow article cites a paper establishing the result for graphs on grids with holes - you won't fare significantly better than using brute force unless you can come up with more constraints.
You may be lucky in identifying at least one of your start and end nodes by searching for vertices of degree 1 in the underlying grid cell graph.

Algorithm to align and compare two sets of vectors which may be incomplete and ignoring scaling?

Here is the problem:
I have many sets of points, and want to come up with a function that can take one set and rank matches based on their similarity to the first. Scaling, translation, and rotation do not matter, and some points may be missing from any of the sets of points. The best match is the one that if scaled and translated in the ideal way has the least mean square error between points (maybe with a cap on penalty, or considering only the best fraction of points to handle missing points).
I am trying to come up with a good way to do this, and am wondering if there are any well known algorithms that can handle this type of problem? Just the name of something would be awesome! I lack a formal CSCI or math education, and am doing the best to teach myself.
A few things I have tried
The first thing that comes to mind is to normalize the points somehow, but I dont think that this is helpful because the missing points may throw things off.
The best way I can think of is to estimate a starting point by translating to match their centroids, scaling so that the largest distances from the centroid of the sets match. From there, do an A* search, scaling, rotating, and translating until I reach a maximum, and then compare the two sets. (I hope I am using the term A* correctly, I mean trying small translations and scalings and selecting the move giving the best match) I think this will find the global maximum most of the time, but is not guaranteed to. I am looking for a better way that will always be correct.
Thanks a ton for the help! It has been fun and interesting trying to figure this out so far, so I hope it is for you as well.
There's a very clever algorithm for identifying starfields. You find 4 points in a diamond shape and then using the two stars farthest apart you define a coordinate system locating the other two stars. This is scale and rotation invariant because the locations are relative to the first two stars. This forms a hash. You generate several of these hashes and use those to generate candidates. Once you have the candidates you look for ones where multiple hashes have the correct relationships.
This is described in a paper and a presentation on http://astrometry.net/ .
This paper may be useful: Shape Matching and Object Recognition Using Shape Contexts
Edit:
There is a couple of relatively simple methods to solve the problem:
To combine all possible pairs of points (one for each set) to nodes, connect these nodes where distances in both sets match, then solve the maximal clique problem for this graph. Since the maximal clique problem is NP-complete, the complexity is probably O(exp(n^2)), so if you have too many points, don't use this algorithm directly, use some approximation.
Use Generalised Hough transform to match two sets of points. This approach has less complexity (O(n^4)). But it is more complicated, so I cannot explain it here.
You can find the details in computer vision books, for example "Machine vision: theory, algorithms, practicalities" by E. R. Davies (2005).

Finding a maximal square from a finite set of tiles (approximation)

I have a final set of tiles in which every edge can have on of four colors.
The task is to find a maximal possible square build from a given set (finite) of this tiles. Tiles can be rotated.
I need to design 3 algorithms for finding a solution for this task. One complete and two aproximations.
Obviously it is my task for Algorithms class so Im not asking about complete solutions (as this would be unfair) but for some directions.
Im already designed a kind of complete algorithm (using backtracking - search for a square of size sqrt(n) - if it could not be found try finding smaller and so on) but I have no idea how to create aproximation algorithms. I think one will be kind of stupid which will find a good answer only in specific cases just to document that it is not a good aproach but still I need one much faster then backtracking and quite good one.
Also is this problem NP-hard one? My backtracking algorithm is exponential one but it doesnt mean that there cannot be a better one...
EDIT: I have complete algorithm with exponential time, could some one give me some hints how to build some kind of aproximation for this problem with polynomial time or something better then exponential?
EDIT2: I have the idea that this problem can be changed to a problem of reducting a graph to square grid graph ( http://mathworld.wolfram.com/GridGraph.html ). Still there is a problem if the tiles can be arranged in such a way to build a grid, but this could be a good point to start. Are there any, for example, greedy or any other aproximation algorithms for reducting graph to square-grid graph?
Suppose your backtracking algorithm constructs k-by-k squares for increasing values of k.
You can extend the backtracking algorithm with heuristics. So instead of choosing the next tile randomly, choose and attach a tile such that the colors of the free tiles "agree with" those on the square. The big problem is to find the "agreement" heuristics. One possible heuristics is to find the least common color on the free tiles and use it.

Resources